
9/19/2022

1

DATA STRUCTURE USING C

(KCS 301)

By:

Dr. Sunil Kumar

Professor, CSE Dept.

MIET, Meerut

1

UNIT 2:
Part I: Stacks

Part II: Recursion

Part III: Queues

Dr. Sunil Kumar, CSE Dept., MIET Meerut
2

9/19/2022

2

UNIT 2 – Part I: Stacks

Dr. Sunil Kumar, CSE Dept., MIET Meerut
3

Topics Covered
� Definition of Stack

� Stack operations: Push & Pop

� Implementation of Stack in C
� Array Implementation

� Linked List Implementation

� Applications of Stack:
� Expression Conversion

� Infix to Postfix Conversion

� Infix to Prefix Conversion
� Expression Evaluation

� Evaluation of Postfix Expression

� Evaluation of Prefix Expression

4

9/19/2022

3

STACKS

� A Stack is a linear data structure in which items are added
or removed only at one end.

� Everyday examples of such a data structure are:
� A Stack of cups

� A stack of cafeteria trays

� A stack of coins

� Works on the principle of LIFO

� In particular, the last item to be added to Stack is the first
item to be removed

� STACKS are also called “PILES” AND “PUSH- DOWN”

Dr. Sunil Kumar, CSE Dept., MIET Meerut
5

A stack of coins

A stack of cups

6

9/19/2022

4

Operations On Stack
� PUSH: is the term to insert an element into a stack

� POP: is the term to delete an element from a stack

� Example: Suppose the following 6 elements are pushed in
order onto an empty stack

� A, B, C, D, E, F

� This means:
� E cannot be deleted before

F is deleted,

� D cannot be deleted before

E and F is deleted and so on.

A

B

C

D

E

F

A

B

C

D

E

F

TOP

Dr. Sunil Kumar, CSE Dept., MIET Meerut
7

Example: When the elements are inserted in the order as
A,B,C,D then the size of the stack is 4 and the top most element
in the stack is D.
When deletion operation is performed on stack continuously then
the order in which the elements are deleted is D,C,B,A.

A top
top

A

B

A

B

C top

A

B

C

D top

A

B

C

A

B

A

top

top

top

Dr. Sunil Kumar, CSE Dept., MIET Meerut
8

9/19/2022

5

TOP = -1

(Empty stack)

3

2

1

0

Push 10

3

2

1

0 10TOP->

Push 20

3

2

1

0 10

TOP-> 20

Push 30

3

2

1

0

TOP->

10

20

30

Push 40

3

2

1

0

TOP->

10

20

30

40

Push 50

(Overflow)

2

1

0

TOP->

10

20

30

403

Example : Here Stack Size is 4

Dr. Sunil Kumar, CSE Dept., MIET Meerut
9

pop

3

2

1

0 10TOP->

pop (TOP = -1)

underflow

3

2

1

0

2

1

0

TOP->

10

20

30

403

pop

2

1

0

TOP->

10

20

30

3

pop

2

1

0

TOP->

10

20

3

pop

Dr. Sunil Kumar, CSE Dept., MIET Meerut
10

9/19/2022

6

POSTPONED DECISIONS

� Stacks are frequently used to indicate the order of the
processing of data when certain steps of the processing
must be postponed until other conditions are fulfilled.

B

A
B

A A
B

C

Dr. Sunil Kumar, CSE Dept., MIET Meerut
11

9/20/2022

1

Array Implementation of Stack

Algorithm for inserting element into the stack:

Algorithm push()

1. if top=(SIZE-1)

then write (‘stack overflow’)

else

2. read item or data

3. top←top+1

4. stack[top]← item

5. stop

Dr. Sunil Kumar, CSE Dept., MIET Meerut
12

Algorithm for deleting elements from the stack:

Algorithm pop()

1. if top=-1

then write (‘stack underflow’)

else

2. item ←stack[top]

3. top ← top-1

4. stop

Array Implementation of Stack...

Dr. Sunil Kumar, CSE Dept., MIET Meerut
13

9/20/2022

2

Display of Stack:

Algorithm for displaying/printing the contents of
stack after push and pop operations.

Algorithm print()

1. if top = -1

then write (‘stack empty’)

2. Repeat for i ← top to 0

print(stack[i])

3. stop

Array Implementation of Stack...

Dr. Sunil Kumar, CSE Dept., MIET Meerut
14

#include<stdio.h>

#include<conio.h>

void push(int);

void pop();

void display();

int stack[30], top = -1;

void main()

{

int value, choice;

clrscr();

while(1)

{

printf("\n\n***** MENU *****\n");

printf("1.Push\n2.Pop\n3. Display\n4. Exit");

printf("\nEnter your choice: ");

scanf("%d",&choice);

switch(choice)

{

case 1:

printf("Enter the value to be insert: ");

scanf("%d",&value);

push(value);

break;

case 2: pop(); break;

case 3: display(); break;

case 4: exit(0);

default: printf("\nWrong choice");

}

}

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut
15

9/20/2022

3

void push(int value)

{ if(top == SIZE-1)

printf("\nStack is Full!");

else

{

top++;

stack[top] = value;

printf("\nInsertion success!!!");

}

}

void pop()

{

if(top == -1)

printf("\nStack is Empty!");

else

{

printf("\nDeleted : %d", stack[top]);

top--;

}

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut
16

void display()

{

if(top == -1)

printf("\nStack is Empty!!!");

else

{

int i;

printf(\n"Stack elements are:\n");

for(i=top; i>=0; i--)

printf("%d\n",stack[i]);

}

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut
17

9/20/2022

4

• Disadvantage of using an array to implement a stack or

queue is the wastage of space.

• Implementing stacks as a linked lists provides a

feasibility on the number of nodes by dynamically

growing stacks, as a linked list is a dynamic data

structure.

• The stack can grow or shrink as the program demands

it.

• A variable top always points to top element of the

stack.

• If top = -1, it specifies stack is empty.

Linked List Implementation of Stack

Dr. Sunil Kumar, CSE Dept., MIET Meerut
18

Push Operation:

• The push operation is used to insert an element into

the stack.

• The new element is added at the topmost position of the

stack.

Linked Stack

Linked List Implementation of Stack...

Dr. Sunil Kumar, CSE Dept., MIET Meerut
19

9/20/2022

5

• To insert an element with value 9, we first check if

TOP=-1.

• If this is the case, then we allocate memory for a new

node, store the value in its DATA part and NULL in its

NEXT part.

• The new node will then be called TOP.

• If TOP!=-1, then we insert the new node at the

beginning of the linked stack and name this new

node as TOP.

Linked stack after inserting a new node

Linked List Implementation of Stack...

20

Algorithm: To Push an element into a linked stack

Step 1: Allocate memory for the new

node and name it as NEW

Step 2: SET NEW -> DATA = VALUE

Step 3: IF TOP = NULL

SET NEW -> NEXT = NULL

SET TOP = NEW

ELSE

SET NEW-> NEXT = TOP

SET TOP = NEW

[END OF IF]

Step 4: END

Dr. Sunil Kumar, CSE Dept., MIET Meerut
21

9/20/2022

6

Pop Operation:

• The pop operation is used to delete an element

into the stack.

• The element is deleted at the topmost position of the

stack.

• However, before deleting the value, we must first

check if TOP=-1, because if this is the case, then it

means that the stack is empty and no more deletions

can be done.

Linked List Implementation of Stack...

Dr. Sunil Kumar, CSE Dept., MIET Meerut
22

• If an attempt is made to delete a value from a stack

that is already empty, an UNDERFLOW message is

printed.

• In case TOP!=-1, then we will delete the node

pointed by TOP, and make TOP point to the

second element of the linked stack. Thus, the

updated stack becomes like this.

Linked stack after deleting a node

TOP

Linked List Implementation of Stack...

Dr. Sunil Kumar, CSE Dept., MIET Meerut
23

9/20/2022

7

Algorithm To Pop an element into a linked stack

Step 1: IF TOP= NULL

PRINT “UNDERFLOW”

Goto Step 5

[END OF IF]

ELSE

Step 2: SET PTR = TOP

Step 3: SET TOP = TOP->NEXT

Step 4: FREE PTR

Step 5: END

Dr. Sunil Kumar, CSE Dept., MIET Meerut
24

/* write a c program to implement stack using linked list */

#include<malloc.h> #include<stdlib.h>

int pop(); int display();

#include<stdio.h>

int push();

int choice,i,item;

struct node {

int data;

struct node *link;

}*top,*new,*ptr;

main() { top=-1;

printf("\n***Select Menu***\n");

while(1) {

printf("\n1.Push \n2.Pop \n3.Display \n4.Exit");

printf("\n\nEnter your choice: ");

scanf("%d",&choice);

switch(choice) {

case 1:

case 2:

case 3:

push();

pop();

display();

break;

break;

break;

case 4: exit(0);

default: printf("\nWrong choice");

}/* end of switch */

}/* end of while */

}/* end of main */
25

9/20/2022

8

int push()

{

new=malloc(sizeof(struct node));

printf("\nEnter the value of item: ");

scanf("%d",&item);

new->data=item;

if(top==NULL)

{

new->link=NULL;

}

else

{

new->link=top;

}

top=new;

return;

}/* end of insertion */

int pop()

{

if(top = = NULL)

{

printf("\n\nStack is empty");

return;

}//if

else

{

printf("\n\nThe deleted element

is: %d",top->data);

top=top->link;

}

return;

}/* end of pop() */

Dr. Sunil Kumar, CSE Dept., MIET Meerut
26

int display()

{

ptr=top;

if(top= =NULL)

{

printf("\nThe list is empty");

return;

}

printf("\nThe elements in the stack are: ");

while(ptr!=NULL)

{

printf("\n %d",ptr->data);

ptr=ptr->link;

}/* end of while */

return;

}/* end of display*/

Dr. Sunil Kumar, CSE Dept., MIET Meerut
27

Applications of Stack

1. Expression Conversion and Evaluation

2. Backtracking

3. Function Call

4. Parenthesis Checking

5. String Reversal 5. String Reversal

6. Syntax Parsing

7. Memory Management

Dr. Sunil Kumar, CSE Dept., MIET Meerut
28

Applications of Stack...

� Arithmetic Expression Conversion

and Evaluation

� Infix to Postfix Conversion

� Evaluation of Postfix Expression� Evaluation of Postfix Expression

� Infix to Prefix Conversion

� Evaluation of Prefix Expression

Dr. Sunil Kumar, CSE Dept., MIET Meerut
29

Arithmetic Expressions

� Precedence Level
� Highest Exponentiation ()

� Next Highest Multiplication (*) and Division (/)

� Lowest Addition (+) and subtraction (-)

� Infix Notation
A + B C – D (G / H) + AA + B C – D (G / H) + A

� Polish Notation (Prefix Notation)
+ AB - CD (/ GH) + A = + / GHA

� Reverse Polish Notation (Postfix or Suffix Notation)
AB + CD - GH / A +

Dr. Sunil Kumar, CSE Dept., MIET Meerut
30

Arithmetic Expressions Conversion

Note:

� In infix to postfix conversion, same precedence operators
can’t remain on to the Stack at the same time, while in
infix to prefix conversion, same precedence operators can
remain onto the Stack at the same time.remain onto the Stack at the same time.

Dr. Sunil Kumar, CSE Dept., MIET Meerut
31

INFIX TO RPN CONVERSION
Algorithm to convert infix expression to RPN:

1. Initialize an empty stack.

2. Repeat the following until the end of the infix expression is reached.
1. Get next input token (constant, variable, arithmetic operator, left parenthesis,

right parenthesis) in the infix expression.
2. If the token is

1. A left parenthesis: Push it onto the stack.
2. A right parenthesis:

1. Pop and display stack elements until a left parenthesis is on the top of
the stack.the stack.

2. Pop the left parenthesis also, but do not display it.
3. An operator:

1. While the stack is nonempty and token has lower or equal priority than
stack top element, pop and display.

2. Push token onto the stack.
4. An operand: Display it.

3. When the end of the infix expression is reached, pop and display stack items until
the stack is empty.

(Note: Left parenthesis in the stack has lowest priority)32

INFIX TO RPN CONVERSION – DEMO
Expression:

3 5+)2–9(*

↑
S

C

A

N

1. Scan a token.
1. 3 is an operand.
2. Display 3.

2. Scan next token.
1. * is an operator.
2. Push * onto stack.

3. Scan next token.
1. (--- left parenthesis.
2. Push (onto stack.

Output:

2. Push (onto stack.
4. Scan next token.

1. 9 is an operand.
2. Display 9.

5. Scan next token.
1. – is an operator.
2. Priority > that of (.
3. Push – .

6. Scan next token.
1. 2 is an operand.
2. Display 2.

7. Scan next token.
1.) --- right parenthesis.
2. Pop and push until (is got.

33

INFIX TO RPN CONVERSION – DEMO

Expression: 3

5+

2 –9

↑
S

C

A

N

8. Scan next token.

• + is an operator.

• Priority of + less than that of *

• Pop * and display.

• Stack is empty.

• Push +

9. Scan next token.

• 5 is an operand.

Output:

*

• 5 is an operand.

• Display.

10. Scan next token.

• End of expression.

• Pop all elements and display.

34

EXAMPLE: Convert A * B + C into Postfix Expression

S.No CURRENT

SYMBOL

OPERATOR

STACK
POSTFIX EXPRESSION

1 A A

INFIX TO POSTFIX USING STACK

2 * * A

3 B * A B

4 + + A B *

5 C + A B * C

6 A B * C +

8

Dr. Sunil Kumar, CSE Dept., MIET Meerut
35

EXAMPLE: A + B * C into Postfix Expression

S.No CURRENT

SYMBOL

OPERATOR

STACK
POSTFIX EXPRESSION

1 A A

INFIX TO POSTFIX USING STACK...

2 + + A

3 B + A B

4 * + * A B

5 C + * A B C

6 + A B C *

7 A B C * +

10
Dr. Sunil Kumar, CSE Dept., MIET Meerut
36

EXAMPLE: A * (B + C) into Postfix Expression

S.No CURRENT

SYMBOL

OPERATOR

STACK
POSTFIX EXPRESSION

1 A A

INFIX TO POSTFIX USING STACK...

2 * * A

3 (* (A

4 B * (A B

5 + * (+ A B

6 C * (+ A B C

7) * A B C +

8 A B C + *

11Dr. Sunil Kumar, CSE Dept., MIET Meerut
37

EXAMPLE: A * B ^ C + D into Postfix Expression

S.No CURRENT

SYMBOL

OPERATOR

STACK
POSTFIX EXPRESSION

1 A A

INFIX TO POSTFIX USING STACK...

2 * * A

3 B * A B

4 ^ * ^ A B

5 C * ^ A B C

6 + + A B C ^ *

7 D + A B C ^ * D

8 A B C ^ * D +

13Dr. Sunil Kumar, CSE Dept., MIET Meerut
38

EXAMPLE: A * (B + C * D)+ E into Postfix Expression

S.No CURRENT

SYMBOL

OPERATOR STACK POSTFIX EXPRESSION

1 A A

2 * * A

3 (* (A

4 B * (A B

INFIX TO POSTFIX USING STACK...

4 B * (A B

5 + * (+ A B

6 C * (+ A B C

7 * * (+ * A B C

8 D * (+ * A B C D

9) * A B C D * +

10 + + A B C D * + *

11 E + A B C D * + * E

12 A B C D * + * E +
14

39

9/21/2022

1

EXAMPLE : CONVERT 2*3/(2-1)+5*3 into Postfix Expression

S.No CURRENT SYMBOL OPERATOR STACK POSTFIX EXPRESSION

1 2 2

2 * * 2

3 3 * 23

4 / / 23*

5 (/(23*

6 2 /(23*2

7 - /(- 23*2

8 1 /(- 23*21

9) / 23*21-

10 + + 23*21-/

11 5 + 23*21-/5

12 * +* 23*21-/53

13 3 +* 23*21-/53

14 23*21-/53*+
15

INFIX TO POSTFIX USING STACK...

40

EXAMPLE : CONVERT (A+B)^C-(D*E)/F into Postfix Expression

S.No CURRENT

SYMBOL

OPERATOR STACK POSTFIX EXPRESSION

1 ((Empty

2 A (A

3 + (+ A

4 B (+ AB

5) Empty AB+

6 ^ ^ AB+

7 C ^ AB+C

8 - - AB+C^

9 (-(AB+C^

10 D -(AB+C^D

11 * -(* AB+C^D

12 E -(* AB+C^DE

13) - AB+C^DE*

14 / -/ AB+C^DE*

15 F -/ AB+C^DE*F

16 Empty AB+C^DE*F/- 15

INFIX TO POSTFIX USING STACK...

41

9/21/2022

2

EXAMPLE : CONVERT A + (B * C - (D / E ↑ F) * G) * H)

S.No CURRENT

SYMBOL

OPERATOR STACK POSTFIX EXPRESSION

1 A Empty A

2 + + A

3 (+ (A

4 B + (A B

5 * + (* A B

6 C + (* A B C

7 - + (- A B C *

8 (+ (- (A B C *

9 D + (- (A B C * D

10 / + (- (/ A B C * D

11 E + (- (/ A B C * D E

15

INFIX TO POSTFIX USING STACK...

42

S.No CURRENT SYMBOL OPERATOR STACK POSTFIX EXPRESSION

12 ↑ + (- (/ ↑ A B C * D E

13 F + (- (/ ↑ A B C * D E F

14) + (- A B C * D E F ↑ /

15 * + (- * A B C * D E F ↑ /

16 G + (- * A B C * D E F ↑ / G

17) + A B C * D E F ↑ / G * -

18 * + * A B C * D E F ↑ / G * -

19 H + * A B C * D E F ↑ / G * - H

20 + A B C * D E F ↑ / G * - H *

21 Empty A B C * D E F ↑ / G * - H * +

15

EXAMPLE : CONVERT A + (B * C - (D / E ↑ F) * G) * H

INFIX TO POSTFIX USING STACK...

43

9/21/2022

3

Convert: (9 - ((3 * 4) + 8) / 4) into Postfix Expression

SNO. CURRENT SYMBOL OPERATOR STACK POSTFIX EXPRESSION

1 ((

2 9 (9

3 - (- 9

4 ((-(9

5 ((-((9

6 3 (-((9 3

7 * (-((* 9 3

8 4 (-((* 9 3 4

9) (-(9 3 4 *

10 + (-(+ 9 3 4 *

11 8 (-(+ 9 3 4 * 8

12) (- 9 3 4 * 8 +

13 / (-/ 9 3 4 * 8 +

14 4 (-/ 9 3 4 * 8 + 4

15) 9 3 4 * 8 + 4 / -
44

9/21/2022

1

Infix to Prefix Conversion

� Given Infix - (A+B)^C-(D*E)/F

� Step 1: Reverse the infix string. Note that while
reversing the string you must interchange left and right
parentheses.

� Step 2: Obtain the prefix expression of the infix
expression.

Dr. Sunil Kumar, CSE Dept., MIET Meerut
55

Infix to Prefix Conversion...

� Given Infix - (A+B)^C-(D*E)/F

� String after reversal – F/) E*D(^)B+A(

� String after interchanging right and left
parenthesis – F/ (E*D)^(B+A)

Dr. Sunil Kumar, CSE Dept., MIET Meerut
56

9/21/2022

2

S.No CURRENT SYMBOL OPERATOR STACK PREFIX STRING

1 F Empty F

2 / / F

3 (/ (F

4 E / (E F

5 * / (* E F

6 D / (* D E F

7) / * D E F

8 - - / * D E F

9 C - C / * D E F

10 ^ - ^ C / * D E F

11 (- ^ (C / * D E F

12 B - ^ (B C / * D E F

13 + - ^ (+ B C / * D E F

14 A - ^ (+ A B C / * D E F

15) - ^ + A B C / * D E F

16 - ^ + A B C / * D E F

17 Empty - ^+ A B C / * D E F 14

INFIX TO PREFIX USING STACK
EXAMPLE: (A+B)^C-(D*E)/F

57

INFIX TO PREFIX USING STACK

EXAMPLE: A * B + C

S.No CURRENT

SYMBOL

OPERATOR

STACK
PREFIX STRING

1 C C

2 + + C

3 B + BC

4 * + * BC

5 A + * ABC

6 + *ABC

+*ABC

858

9/21/2022

3

EXAMPLE: A + B * C

S.No CURRENT

SYMBOL

OPERATOR

STACK
PREFIX STRING

1 C C

2 * * C

3 B * BC

4 + + *BC

5 A + A*BC

6 +A*BC

10

INFIX TO PREFIX USING STACK

59

EXAMPLE: A * (B + C)

S.No CURRENT

SYMBOL

OPERATOR

STACK
PREFIX STRING

1 ((Empty

2 C (C

3 + (+ BC

4 B (+ BC

5) (+) +BC

6 * * + B C

7 A * A+ B C

8 *A+ B C

11

INFIX TO PREFIX USING STACK

60

9/21/2022

4

EXAMPLE: A - B + C

S.No CURRENT

SYMBOL

OPERATOR

STACK
PREFIX STRING

1 C C

2 + + C

3 B + B C

4 - + - B C

5 A + - A B C

6 + - A B C

7 +-A B C

12

INFIX TO PREFIX USING STACK

61

EXAMPLE: A * B ^ C + D

S.No CURRENT

SYMBOL

OPERATOR

STACK
PREFIX STRING

1 D D

2 + + D

3 C + C D

4 ^ +^ C D

5 B +^ B C D

6 * +* ^ B C D

7 A +* A ^ B C D

8 + * A ^ B C D

13

INFIX TO PREFIX USING STACK

62

9/21/2022

5

S.No CURRENT

SYMBOL

OPERATOR

STACK

PREFIX STRING

1 E E

2 + + E

3 (+(E

4 D +(D E

5 * + (* D E

6 C + (* C D E

7 + + (+ * C D E

8 B + (+ B * C D E

9) + +B * C D E

10 * + * +B * C D E

11 A + A + B * C D E

12 + * A + B * C D E
14

INFIX TO PREFIX USING STACK

EXAMPLE: A * (B + C* D) + E

63

9/26/2022

1

EVALUATION OF RPN EXPRESSION

Algorithm evaluateRPN(expression)

1. Initialize an empty stack.

2. Do

1. Get next token (constant, variable, arithmetic operator) in RPN expression.

2. If token is an operand, push it on the stack.

3. If token is an operator do the following:
1. Pop top two values from the stack. (If the stack does not contain two items, report

error.)

2. Apply operator token to these two values.

3. Push the resulting value onto the stack.

3. Until the end of the expression is encountered.

4. The value of the expression is on the top of the stack (and stack should contain only
this value).

Dr. Sunil Kumar, CSE Dept., MIET Meerut
45

EVALUATION OF RPN EXPRESSION – DEMO

Top →

Expression:

↑
S

C

A

N

1. Scan a token.

1. 2 is an operand.

2. Push 2 onto stack.

2. Scan next token.

1. 4 is an operand.

2. Push 4 onto stack

3. Scan next token.

1. * is an operator.

2. Pop from stack --- 4.

3. Pop from stack --- 2.

4. Apply * on the operands.

5. Push result 8 onto stack.

4. Scan next token.

1. 9 is an operand.

2. Push 9 onto stack.

2 *4 59 + –

8

46

9/26/2022

2

EVALUATION OF RPN EXPRESSION – DEMO

Top →

Expression:

↑
S

C

A

N

1. Scan a token.
1. 2 is an operand.
2. Push 2 onto stack.

2. Scan next token.
1. 4 is an operand.
2. Push 4 onto stack

3. Scan next token.
1. * is an operator.
2. Pop from stack --- 4.
3. Pop from stack --- 2.
4. Apply * on the operands.
5. Push result 6 onto stack.

4. Scan next token.
1. 9 is an operand.
2. Push 9 onto stack.

5. Scan next token.
1. 5 is an operand.
2. Push 5 onto stack.

6. Scan next token.
1. + is an operator.
2. Pop
3. Pop
4. Apply +
5. Push result.

7. Scan next token.
1. - is an operand.
2. Pop, pop, apply -, push result.

5

9

+ –

8

14

47

EVALUATION OF RPN EXPRESSION – DEMO

Top →

Expression:

↑
S

C

A

N

1. Scan a token.
1. 2 is an operand.
2. Push 2 onto stack.

2. Scan next token.
1. 4 is an operand.
2. Push 4 onto stack

3. Scan next token.
1. * is an operator.
2. Pop from stack --- 4.
3. Pop from stack --- 2.
4. Apply * on the operands.
5. Push result 6 onto stack.

4. Scan next token.
1. 9 is an operand.
2. Push 9 onto stack.

5. Scan next token.
1. 5 is an operand.
2. Push 5 onto stack.

6. Scan next token.
1. + is an operator.
2. Pop
3. Pop
4. Apply +
5. Push result.

7. Scan next token.
1. - is an operand.
2. Pop, pop, apply -, push result.

–

-6
48

9/26/2022

3

EVALUATION OF RPN EXPRESSION – DEMO

Top →

Expression:

↑
S

C

A

N

1. Scan a token.
1. 2 is an operand.
2. Push 2 onto stack.

2. Scan next token.
1. 4 is an operand.
2. Push 4 onto stack

3. Scan next token.
1. * is an operator.
2. Pop from stack --- 4.
3. Pop from stack --- 2.
4. Apply * on the operands.
5. Push result 6 onto stack.

4. Scan next token.
1. 9 is an operand.
2. Push 9 onto stack.

5. Scan next token.
1. 5 is an operand.
2. Push 5 onto stack.

6. Scan next token.
1. + is an operator.
2. Pop
3. Pop
4. Apply +
5. Push result.

7. Scan next token.
1. - is an operand.
2. Pop, pop, apply -, push result.

8. Scan next token
1. End of expression
2. Pop and display

-6

49

� Evaluate: 5 , 6 , 2 , + , * , 12 , 4 , / , -

Symbol scanned Stack

5 5

6 5, 6

2 5, 6, 2

+ 5, 8

* 40

12 40,12

4 40,12,4

/ 40,3

- 37

Evaluation of Postfix Expression…

50

9/26/2022

4

� Evaluate: 6 3 2 4 + – *

Symbol scanned Stack

6 6

3 6, 3

2 6, 3, 2

4 6, 3, 2, 4

+ 6, 3, 6

- 6,-3

* -18

Evaluation of Postfix Expression…

51

� Evaluate: 9 3 4 * 8 + 4 / -

Symbol scanned Stack

9 9

3 9, 3

4 9, 3, 4

* 9, 12

8 9, 12, 8

+ 9, 20

4 9, 20, 4

/ 9, 5

- 4

Evaluation of Postfix Expression…

52

9/26/2022

5

� Evaluate: 2 3 4 + * 5 *

Symbol scanned Stack

2 2

3 2, 3

4 2, 3, 4

+ 2, 7

* 14

5 14, 5

* 70

Evaluation of Postfix Expression…

Dr. Sunil Kumar, CSE Dept., MIET Meerut
53

� Evaluate: 6 2 3 + - 3 8 2 / + * 2 ↑ 3 +

Symbol scanned Stack

6 6

2 6 2

3 6 2 3

+ 6 5

- 1

3 1 3

8 1 3 8

2 1 3 8 2

/ 1 3 4

+ 1 7

* 7

2 7 2

↑ 49

3 49 3

+ 52

Evaluation of Postfix Expression…

54

9/26/2022

6

� Evaluate: - * + 4 3 2 5

Symbol scanned Stack

5 5

2 5, 2

3 5, 2, 3

4 5, 2, 3, 4

+ 5, 2, 7

* 5, 14

- 9

Evaluation of Prefix Expression…

55

� Evaluate: + 3 + 4 / 4 20

Symbol scanned Stack

20 20

4 20, 4

/ 5

4 5, 4

+ 9

3 9, 3

+ 12

Evaluation of Prefix Expression…

56

9/26/2022

7

� Evaluate: - * + 4 3 2 15

Symbol Scanned Stack

15 15

2 15, 2

3 15, 2, 3

4 15, 2, 3, 4

+ 15, 2, 7

* 15, 14

- -1

Evaluation of Prefix Expression…

57

26-09-2022

1

Free Powerpoint Templates
Page 2

UNIT 2 - Part II: Recursion

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 3

Table of Contents

• Iteration and Recursion

• Principle of Recursion

• Problem solving using Iteration and Recursion with
examples such as:

– Factorial Numbers

– Fibonacci Numbers

– Binary Search

– Tower of Hanoi

• Tail Recursion

• Removal of Recursion

• Tradeoffs between Iteration and Recursion

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

2

Free Powerpoint Templates
Page 4

Iteration Vs Recursion

Iteration Recursion

It is a process of executing a

statement or a set of statements

repeatedly, until some specific

condition is met.

Recursion is the technique of defining

anything in terms of itself.

It uses four clear cut steps:

1. initialization,

2. condition,

3. execution,

4. updation.

There must be an exclusive if

statement inside the recursive

functions, specifying stopping

condition. There are base case and

recursive case in recursive function.

Any recursive problem can be solved

iteratively.

Not all problems have recursive

solution.

It is more efficient in terms of memory

utilization and execution speed.

Recursion is generally a worse option

to go simple problems. It is less

efficient in terms of memory utilization

and execution speed.

Free Powerpoint Templates
Page 5

• A definition is recursive if it is defined in terms of

itself.

• Recursion is a process by which a function calls itself

repeatedly, until some specified condition has been

satisfied.

• The process is used for repetitive computations in

which each action is stated in terms of a previous result.

Principle of Recursion

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

3

Free Powerpoint Templates
Page 6

Need of Recursion

• Recursion makes solving problems easier by breaking

them into smaller sub problems thereby making it easier

to understand the problem.

• As such, not all problems can be broken down into

smaller sub problems so that they could be solved

recursively.

• The most important advantage is that recursion makes

algorithm and its implementation simple and compact.

• It increases programmer efficiency.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 7

Example: Factorial Function

• In general, we can express the factorial
function as follows:

n! = n * (n-1)!

• Is this correct? Well… almost.

• The factorial function is only defined for
positive integers. So we should be a bit
more precise:

n! = 1 (if n is equal to 0 or 1)

n! = n * (n-1)! (if n is larger than 1)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

4

Free Powerpoint Templates
Page 8

Factorial Function

The C equivalent of this definition:

int fac(int numb){

if(numb<=1)

return 1;

else

return numb* fac(numb-1);

}

� recursion means that a function calls itself

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 9

Factorial Function

• Assume the number typed is 3, that is, numb=3.
fac(3) :

int fac(int numb){

if(numb<=1)

return 1;

else

return numb * fac(numb-1);

}

3 <= 1 ? No.
fac(3) = 3 * fac(2)

fac(2) :

2 <= 1 ? No.
fac(2) = 2 * fac(1)

fac(1) :

1 <= 1 ? Yes.
return 1

fac(2) = 2 * 1 = 2

return fac(2)

fac(3) = 3 * 2 = 6

return fac(3)

fac(3) has the value 6

26-09-2022

5

Free Powerpoint Templates
Page 10

Factorial Function

For certain problems (such as the factorial function), a
recursive solution often leads to short and elegant code.
Compare the recursive solution with the iterative
solution:

Iterative Solution
int fac(int numb){

int product=1;

while(numb>1){

product *= numb;

numb--;

}

return product;

}

Recursive Solution
int fac(int numb){

if(numb<=1)

return 1;

else

return numb*fac(numb-1);

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

1

Free Powerpoint Templates
Page 11

Example: Fibonacci Numbers

• Fibonacci Numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

where each number is the sum of the preceding
two.

• Recursive definition:
– F(0) = 0;

– F(1) = 1;

– F(number) = F(number-1)+ F(number-2);

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 12

Example: Fibonacci Numbers...

//Calculate Fibonacci numbers using recursive function.

//A very inefficient way, but illustrates recursion well

int fib(int number)

{

if (number = = 0) return 0;

if (number = = 1) return 1;

return (fib(number-1) + fib(number-2));

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

2

Free Powerpoint Templates
Page 13Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 14

Trace a Fibonacci Number

• Assume the input number is 4, that is, num=4:
fib(4):

4 == 0 ? No; 4 == 1? No.

fib(4) = fib(3) + fib(2)

fib(3):

3 == 0 ? No; 3 == 1? No.

fib(3) = fib(2) + fib(1)

fib(2):

2 == 0? No; 2==1? No.

fib(2) = fib(1)+fib(0)

fib(1):

1== 0 ? No; 1 == 1? Yes.

fib(1) = 1;

return fib(1);

int fib(int num)

{

if (num == 0) return 0;

if (num == 1) return 1;

return

(fib(num-1)+fib(num-2));

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

3

Free Powerpoint Templates
Page 15

Trace a Fibonacci Number

fib(0):

0 == 0 ? Yes.
fib(0) = 0;
return fib(0);

fib(2) = 1 + 0 = 1;
return fib(2);

fib(3) = 1 + fib(1)
fib(1):
1 == 0 ? No; 1 == 1? Yes
fib(1) = 1;
return fib(1);

fib(3) = 1 + 1 = 2;
return fib(3)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 16

Trace a Fibonacci Number

fib(2):

2 == 0 ? No; 2 == 1? No.

fib(2) = fib(1) + fib(0)

fib(1):

1== 0 ? No; 1 == 1? Yes.

fib(1) = 1;

return fib(1);

fib(0):

0 == 0 ? Yes.

fib(0) = 0;

return fib(0);

fib(2) = 1 + 0 = 1;

return fib(2);

fib(4) = fib(3) + fib(2)

= 2 + 1 = 3;

return fib(4);

26-09-2022

4

Free Powerpoint Templates
Page 17

Example: Fibonacci Number

//Calculate Fibonacci numbers iteratively

//much more efficient than recursive solution

int fib(int n)

{

int f[100];

f[0] = 0;

f[1] = 1;

for (int i=2; i<= n; i++)

f[i] = f[i-1] + f[i-2];

return f[n];

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 18

Example: Binary Search

– Search for an element in an array

• Sequential search

• Binary search

– Binary search

• Compare the search element with the middle

element of the array

• If not equal, then apply binary search to half of the

array (if not empty) where the search element

would be.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

5

Free Powerpoint Templates
Page 19

Binary Search with Recursion
// Searches an ordered array of integers using recursion

int bsearchr(int data[], // input: array

int first, // input: lower bound

int last, // input: upper bound

int value // input: value to find

)// output: index if found, otherwise return –1

{

int middle = (first + last) / 2;

if (data[middle] == value)

return middle;

else if (value < data[middle])

return bsearchr(data, first, middle-1, value);

else

return bsearchr(data, middle+1, last, value);

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 20

Binary Search without Recursion

// Searches an ordered array of integers
int bsearch(int data[8]; // input: array

int size; // input: array size
int value; // input: value to find
) // output: if found,return

// index; otherwise, return -1
{
int first, last, upper;

first = 0;
last = size - 1;

while (true) {
middle = (first + last) / 2;

if (data[middle] == value)
return middle;

else if (value < data[middle])
last = middle - 1;

else
first = middle + 1;

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

6

Free Powerpoint Templates
Page 21

Example: Tower of Hanoi

�Tower of Hanoi is a mathematical game or puzzle.

�It consists of three rods/pegs and a number of disks of

different sizes which can slide onto any rod.

�The puzzle starts with the disks in a neat stack in

ascending order of size on one rod, the smallest at the

top, thus making a conical shape.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 22

Example: Tower of Hanoi…

�The objective of the puzzle is to move the entire stack

to another rod, obeying the following rules:

1. Only one disk can be moved at a time.

2. No larger disk may be placed on top of a smaller

disk.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

7

Free Powerpoint Templates
Page 23

Example: Tower of Hanoi…

�The puzzle can be played with any number of disks.

�The minimum number of moves required to solve
a Tower of Hanoi puzzle is

= 2n - 1
where n is the number of disks.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 24

Towers of Hanoi

A B C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

8

Free Powerpoint Templates
Page 25

Towers of Hanoi

• n = 1

• move disk from A to C

A B C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 26

Towers of Hanoi

• n = 1

A B C

A�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

9

Free Powerpoint Templates
Page 27

Towers of Hanoi

• n = 2

• move disk from A to B

A B C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 28

Towers of Hanoi

• n = 2

A B C

A�B

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

10

Free Powerpoint Templates
Page 29

Towers of Hanoi

• n = 2

• move disk from B to C

A B C

A�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 30

Towers of Hanoi

• n = 2

A B C

B�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

11

Free Powerpoint Templates
Page 31

Tower of Hanoi(N= 2)

1. Disk 1 moved from A � B

2. Disk 2 moved from A � C

3. Disk 1 moved from B � C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 32

Towers of Hanoi

• n = 3

• move disk from A to C

A B C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

12

Free Powerpoint Templates
Page 33

Towers of Hanoi

• n = 3

• move disk from A to B

A B C

A�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 34

Towers of Hanoi

• n = 3

• move disk from C to B

A B C

A�B

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

13

Free Powerpoint Templates
Page 35

Towers of Hanoi

• n = 3

• move disk from A to C

A B C

C�B

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 36

Towers of Hanoi

• n = 3

• move disk from B to A

A B C

A�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

14

Free Powerpoint Templates
Page 37

Towers of Hanoi

• n = 3

• move disk from B to C

A B C

B�A

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 38

Towers of Hanoi

• n = 3

• move disk from A to C

A B C

B�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

15

Free Powerpoint Templates
Page 39

Towers of Hanoi

• n = 3

A B C

A�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 40

Tower of Hanoi(N= 3)

1. Disk 1 moved from A � C

2. Disk 2 moved from A � B

3. Disk 1 moved from C � B

4. Disk 3 moved from A � C

5. Disk 1 moved from B � A

6. Disk 2 moved from B � C

7. Disk 1 moved from A � C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

16

Free Powerpoint Templates
Page 41

Towers of Hanoi

• n = 4

• move (n – 1) disks from A to B using C

A B C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 42

Towers of Hanoi

• n = 4

• move disk from A to C

A B C

A(N-1) Disks�B

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

17

Free Powerpoint Templates
Page 43

Towers of Hanoi

• n = 4

• move (n – 1) disks from B to C using A

A B C

A�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 44

Towers of Hanoi

• n = 4

A B C

B(N-1) Disks�C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

18

Free Powerpoint Templates
Page 45

Tower of Hanoi(N= 4)

1. A� B

2. A� C

3. B� C

4. A� B

5. C� A

6. C� B

7. A� B

8. A� C

9. B� C

10. B� A

11. C� A

12. B� C

13. A� B

14. A� C

15. B� C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

1

Free Powerpoint Templates
Page 46

Towers of Hanoi

• Base Case n = 1

1. move disk from A to C

• Recursive case

1. move (n – 1) disks from A to B

2. move 1 disk from A to C

3. move (n – 1) disks from B to C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 47

Algorithm

Let’s call the three pegs / rods

BEG(Source), AUX(AUXiliary) & END(Destination).

1) Move the top N–1 disks from the Source to AUXiliary tower

2) Move the Nth disk from Source to Destination tower.

3) Move the N–1 disks from AUXiliary tower to Destination tower.

Transferring the top N–1 disks from Source to AUXiliary

tower can again be thought of as a fresh problem and can be

solved in the same manner.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

2

Free Powerpoint Templates
Page 48

Algorithm

ALGORITHM:

TOH(N, BEG, AUX, END)

1. If N=1 then,

a. Write BEG� END

b. Return.

2. CALL TOH (N-1, BEG, END, AUX)

3. Write BEG � END

4. CALL TOH (N-1, AUX, BEG, END)

5. Return.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 49

Tower of Hanoi Program in C

#include<stdio.h>

void TOH(int n,char x,char y,char z)

{

if(n>0)

{

TOH(n-1,x,z,y);

printf("\n%c to %c",x,y);

TOH(n-1,y,x,z);

}

}

int main()

{

int n=3;

TOH(n,'A','B','C');

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

3

Free Powerpoint Templates
Page 50

Tail Recursion

Free Powerpoint Templates
Page 51

What is tail recursion?

• A recursive function call is tail recursive when
recursive call is the last thing executed by
the function.

• In other words, a recursive function call is said to
be tail recursive if there is nothing to do after
the function returns except return its value.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

4

Free Powerpoint Templates
Page 52

Contd…

/* non tail recursive example of the factorial function in C*/

#include<stdio.h>

void main()

{

int n, c;

printf(“Enter the number: ”);

scanf(“%d”,&n);

c=fact(n);

printf("%d",c);

}

fact(n)

{

if ((n == 0|| n==1)

return 1;

return n * fact(n - 1);

}

Free Powerpoint Templates
Page 53

Contd…

// A tail recursive function to

calculate factorial

#include<stdio.h>

void main()

{

int n, c;

printf(“Enter the number: ”);

scanf(“%d”,&n);

c=factorial(n, 1);

printf(“Factorial: %d”, c);

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

int factorial(int n, int f)

{

if (n == 0|| n==1)

{

return f;

}

else

{

f=f*n;

return factorial(n - 1, f);

}

}

28-09-2022

5

Free Powerpoint Templates
Page 54

Contd…

• Why do we care?
• The tail recursive functions considered better than

non tail recursive functions as tail-recursion can be
optimized by compiler.

• Tail-recursive functions is simple, since the
recursive call is the last statement, there is nothing
left to do in the current function, so saving the
current function’s stack frame is of no use.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 55

Removal of Recursion

28-09-2022

6

Free Powerpoint Templates
Page 56

The function which call itself (In function body)
again and again is known as recursive function.
This function will call itself as long as the
condition is satisfied

This recursion can be removed through
Iteration.

Removal of Recursion

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 57

A simple program of factorial

through recursion:

Removal of Recursion…

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

7

Free Powerpoint Templates
Page 58

/*Find the Factorial of any N umber*/
#include<stdio.h>
main()

{

int n, value;

printf(“Enter the number”);

scanf(“%d”,&n);

if(n<0)

printf(“No factorial of negative number”);

else

if(n==0)

printf(“Factorial of zero is 1”);

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 59

else

{

value=factorial(n); /*function for factoria l of number*/

printf(“Factorial of %d= %d”,n,value);

}

}

factorial (int k)

{

int fact=1;

if(k>1)

fact=k*factorial(k-1); /*recursive function cal l*/

return (fact);

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

8

Free Powerpoint Templates
Page 60

� Same thing can be replaced with Iteration as

/*Find the factorial of any number*/

#include<stdio.h>
main()
{
int n, value;
printf(“Enter the number”);
scanf(“%d”,&n);
if(n<0)
printf(“No factorial of negative number”);
else
if(n==0)
printf(“Factorial of zero is 1”);

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 61

else

{

value=factorial(n); /*function for factorial of number*/

printf(“Factorial of %d= %d”,n,value);

}

}

int factorial(int no)

{

int i,fact=1;

for(i=no;i>1;i--)

fact=fact*i;

return fact;

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

9

Free Powerpoint Templates
Page 62

BASIS FOR COMPARISON RECURSION ITERATION

Basic The statement in a body of
function calls the function itself.

Allows the set of instructions to be
repeatedly executed.

Format In recursive function, only
termination condition (base case)
is specified.

Iteration includes initialization,
condition, execution of statement
within loop and update
(increments and decrements) the
control variable.

Termination A conditional statement is
included in the body of the
function to force the function to
return without recursion call being
executed.

The iteration statement is
repeatedly executed until a certain
condition is reached.

Condition If the function does not converge
to some condition called (base
case), it leads to infinite recursion.

If the control condition in the
iteration statement never become
false, it leads to infinite iteration.

Infinite Repetition Infinite recursion can crash the
system.

Infinite loop uses CPU cycles
repeatedly.

Trade-off between Recursion and Iteration

Free Powerpoint Templates
Page 63

BASIS FOR COMPARISON RECURSION ITERATION

Applied Recursion is always applied to
functions.

Iteration is applied to iteration
statements or "loops".

Stack The stack is used to store the set
of new local variables and
parameters each time the function
is called.

Does not uses stack.

Overhead Recursion possesses the
overhead of repeated function
calls.

No overhead of repeated
function call.

Speed Slow in execution. Fast in execution.

Size of Code Recursion reduces the size of the
code.

Iteration makes the code longer.

Trade-off between Recursion and Iteration…

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

1

Free Powerpoint Templates
Page 2

UNIT 2 - Part III: Queues

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 3

Table of Contents

• Definition of Queue

• Operations on Queue: Add, Delete, Peek, Empty, Full.

• Types of Queues:

– Linear Queue

– Circular Queue

– Dequeue [Double Ended Queue]

– Priority Queue

• Array and linked implementation of queues in C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

2

Free Powerpoint Templates
Page 4

Free Powerpoint Templates

QUEUE

Free Powerpoint Templates
Page 5

Queue

• Ordered collection of homogeneous elements

• Non-primitive linear data structure.

• A new element is added at one end called Rear End

and the existing elements are deleted from the other

end called Front End.

• This mechanism is called First-In-First-Out (FIFO).
e.g. People standing in Queue for Movie Ticket

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

3

Free Powerpoint Templates
Page 6Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 7

Operations on Queue

– add (enqueue): Add an element to the back

– remove (dequeue): Remove the front element.

– peek (): Examine the element at the front.

– isEmpty(): Check whether queue is empty or not

– isFull() : Check whether queue is full or not

– Display(): Display the elements of the queue

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

4

Free Powerpoint Templates
Page 8

Elements of Queue
• Front End:

This end is used for deleting an element from a queue.

Initially front end is set to -1. Front end is incremented by

one when a new element has to be deleted from queue.

• Rear End:

This end is used for inserting an element in a queue.

Initially rear end is set to -1. rear end is incremented by

one when a new element has to be inserted in queue.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 9

‘Queue Full(Overflow)’ Condition

• Queue Full(Overflow):

– Inserting an element in a queue which is already full is known as Queue Full

condition (Rear = Size-1).

– When the queue is fully occupied and enqueue() operation is called queue

overflow occurs.

• Example: Queue Full:

– Before inserting an element in queue 1st check whether space is available for

new element in queue. This can be done by checking position of rear end.

Array begins with 0th index position & ends with Size-1 position. If numbers

of elements in queue are equal to size of queue i.e. if rear end position is equal

to Size-1 then queue is said to be full. Size of queue = 4

03-10-2022

5

Free Powerpoint Templates
Page 10

‘Queue Empty(Underflow)’ Condition

• Queue Empty:

– Deleting an element from queue which is already empty is known as

Queue Empty condition (Front = Rear = -1)

– When the queue is fully empty and dequeue() operation is called

queue underflow occurs.

• Queue Empty:

– Before deleting any element from queue check whether there is an

element in the queue. If no element is present inside a queue & front

& rear is set to -1 then queue is said to be empty.

– Size of queue = 4

– Front = Rear = -1

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 11

Types of Queues

1. Queue or Linear Queue or Simple Queue

2. Circular Queue

3. Dequeue (Double Ended Queue)

4. Priority Queue

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

6

Free Powerpoint Templates
Page 12

Implementation of Queues

1.Using an array

2.Using linked list

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 13

Array Implementation of

Queue

03-10-2022

7

Free Powerpoint Templates
Page 14

0 1 2 3 4

Front=-1

Rear=-1

A

0 1 2 3 4

Front=0

Rear=0

1

2

Insert A

A B

0 1 2 3 4

Front=0

Rear=1

3

Insert B

A B C

0 1 2 3 4

Front=0

Rear=2

4

Insert C

B C

0 1 2 3 4

Front=1

Rear=2

5

Delete

C

0 1 2 3 4

Front=2

Rear=2

6

Delete

0 1 2 3 4

Front=3

Rear=2

7

Delete

Queue is empty

Queue is empty

Entry point is called Rear &

Exit point is called Front

Free Powerpoint Templates
Page 15

i) Initially front=rear= -1. It indicates queue is empty.
0 1 2 3 4

front=rear= -1

4

ii) Add 10

0 1 2 3

10

front rear

0 2 3 4

iii) Add 20

10 20

1

4

front rear

iv) Add 30

0 1 2 3

10 20 30

0 2 3 4

front rear

v) Add 40

10 20 30 40

front rear

1

03-10-2022

8

Free Powerpoint Templates
Page 16

0 2 3 4

vi) Add 50

10 20 30 40 50

front rear

1 0 2 3 4

vii) Add 60 (overflow)

10 20 30 40 50

front rear

1

0 2 3 4

viii) delete (10 is removed)

20 30 40 50

front rear

1

front rear

0 2 4

30 40 50

1

ix) delete (20 is removed)

3

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 17

0

40 50

front rear

1

x) delete (30 is removed)

32 4

front rear

0 2 4

50

1

xi) delete (40 is removed)

3

front=rear=-1

1

ix) delete (underflow)

30 2 4

front=rear=-1

1

xii) delete (50 is removed)

30 2 4

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

9

Free Powerpoint Templates
Page 18

Implementation of queue using array

Algorithm insert()

1. If rear = size-1

then write (‘overflow’)

2. else

3. Read item

4. rear← rear + 1

5. queue[rear]← item

6. if(front== -1)

7. front= front+1;

8. stop

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 19

Algorithm to delete element from the queue

Algorithm delete()

1. If (front= = -1)
then write (‘queue is empty’)

2. else

3. Item ← queue [front]

3. front ← front + 1

4. Stop

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

1

Free Powerpoint Templates
Page 20

Algorithm display()
1. if(front== -1)

1.1 write (‘queue is empty’)

2. else

2.1 repeat for i-> front to rear

2.2. print queue[i];

3. Stop

Algorithm to display elements from the queue

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 21

Program: implementation of queue using array.
include <stdio.h>
define size 4
void insertion();
void deletion();
void display();
int front=-1, rear=-1, item, choice, queue[size];
void main()
{
clrscr();
while(1)
{
printf("\n*** MENU ***\n 1. INSERTION\n 2. DELETION\n
3.TRAVERSE\n 4. EXIT\n");
printf("enter your choice:");
scanf("%d",&choice);
switch(choice)
{
case 1:insertion();
break;
case 2:deletion();
break;
case 3:display(); break; case 4:exit(0);
default:printf("*** wrong choice ***\n");}}}

03-10-2022

2

Free Powerpoint Templates
Page 22

void insertion()
{
if(rear =size-1)

else
{
printf("Enter item into queue:");
scanf("%d",&item);
rear++;
queue[rear]=item;
if(front==-1)
front++;
} }

void deletion()
{
if((front==-1)||(front>rear))
printf("*** queue is empty ***\n");

printf("*** queue is full ***\n"); else
{
item=queue[front];
front++;
printf("The deleted item from queue is
%d\n",item);
}
}

void display()
{
int i;
if(front==-1)
printf("*** queue is empty ***\n");
else
{
printf("\n elements in queue:- ");
for(i=front;i<=rear;i++)
printf("%d",queue[i]);
}}

Free Powerpoint Templates
Page 23

Drawback in queue

• In a queue when the rear pointer reaches to the end of

the queue, insertion would be denied even if room

is available at the front.

• One way to remove this restriction is by using the

circular queue.

03-10-2022

3

Free Powerpoint Templates
Page 24

Linked List Implementation of

Queue

Free Powerpoint Templates
Page 25Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

4

Free Powerpoint Templates
Page 26

Free Powerpoint Templates
Page 27

03-10-2022

5

Free Powerpoint Templates
Page 28

Algorithm to insert elements in the queue

Algorithm_Enqueue
1. newNode -> data = data

2. newNode -> next = NULL

3. if (REAR == NULL)

4. FRONT = REAR = newNode

5. else

6. REAR -> next = newNode

7. REAR = newNode

8. end

Free Powerpoint Templates
Page 29

Algorithm to delete elements from the queue

Algorithm_Dequeue
1. if(FRONT == NULL)

print “QUEUE IS EMPTY" and exit.

else

2. temp = FRONT

3. FRONT = FRONT -> NEXT

4. free(temp)

5. end

03-10-2022

6

Free Powerpoint Templates
Page 30

#include<stdio.h>

#include<conio.h>

struct Node

{

int data;

struct Node *next;

};

struct Node *front = NULL,*rear =
NULL;

void EnQueue(int);

void DeQueue();

void display();

int main()

{

int choice, value;

printf("\n*** Queue Implementation
using Linked List ***\n");

while(1)

{

printf("\n****** MENU ******\n");

printf("1. Insert in Queue\n");
printf("2. Delete From Queue\n");
printf("3. Display Queue\n");
printf(“4. Exit\n");

printf("Enter your choice: ");
scanf("%d",&choice);

Free Powerpoint Templates
Page 31

switch(choice)

{

case 1: printf("Insert the value you
want to enter: ");

scanf("%d", &value);
EnQueue(value); break;

case 2: DeQueue(); break;

case 3: display(); break;

case 4: exit(0);

default: printf("\nInvalid
Choice!!\n");

};

}

return 0;

}

void EnQueue(int value)

{

struct Node *newNode;

newNode = (struct
Node*)malloc(sizeof(struct
Node));

newNode -> data = value;

newNode -> next = NULL;

if(front == NULL)

front = rear = newNode;

else

{

rear -> next = newNode;

rear = newNode;

}

}

03-10-2022

7

Free Powerpoint Templates
Page 32

void DeQueue()

{

if(front == NULL)

printf("\n Queue is Empty!!!\n");
else

{

struct Node *temp = front;

front = front -> next;

printf("\n Deleted element is:
%d\n", temp->data);

free(temp);

}

}

void display() {

if(front == NULL)

printf("\n Queue is Empty!!!\n");
else

{

struct Node *temp = front;

while(temp->next != NULL)

{

printf("%d --> ",temp->data); temp
= temp -> next;

}

printf("%d \n",temp->data);

}

}

06-10-2022

1

Free Powerpoint Templates
Page 33

Overcome disadvantage of Linear Queue

• Circular Queue is a linear data structure in which the

operations are performed based on FIFO (First In First
Out) principle and the last position is connected back

to the first position to make a circle.

• It is also called ‘Ring Buffer’.

• In a normal Queue, we can insert elements until Rear

of queue becomes full. But once queue becomes full,

we can not insert the next element even if there is a

space in front of queue.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Free Powerpoint Templates
Page 34

Operations on Circular Queue

• enQueue(value):

– This function is used to insert an element into the

circular queue.

– In a circular queue, the new element is always

inserted at Rear position.

deQueue():

– This function is used to delete an element from the

circular queue.

– In a circular queue, the element is always deleted

from Front position.

06-10-2022

2

Free Powerpoint Templates
Page 35

Example: Consider the following circular queue with N = 5.

1. Initially, Rear = 0, Front = 0.

3. Insert 50, Rear = 2, Front = 1.

Rear

3

5

Rear

2. Insert 10, Rear = 1, Front = 1.
Rear

Front

Front

4. Insert 20, Rear = 3, Front = 1.

Front

Rear

5. Insert 70, Rear = 4, Front = 1.

Front

Rear

6. Delete front, Rear = 4, Front = 2.

Front

Free Powerpoint Templates
Page 36

7. Insert 100, Rear = 5, Front = 2.

9. Insert 140, Rear = 1, Front = 2.

As Front = Rear + 1, so Queue overflow.

Front

Rear

8. Insert 40, Rear = 1, Front = 2.

Rear Front

Rear

10. Delete front, Rear = 1, Front = 3.

Rear

Front

Front

11. Delete front, Rear = 1, Front = 4.

Rear

3

6

Front

12. Delete front, Rear = 1, Front = 5.
Rear

Front

06-10-2022

3

Free Powerpoint Templates
Page 37

Question: Consider the following queue of characters where

QUEUE is a circular array which is allocated six memory cells

FRONT=2, REAR=4 QUEUE: _ A C D _ _

Describe the queue as following operations take place:

(a) F is added to queue

(b) Two letters are deleted

(c) K, L and M are added

(d) Two letters are deleted

(e) R is added to queue

(f) Two letters are deleted

(g) S is added to queue

(h) Two letters are deleted

(i) One letter is deleted

(j) One letter is deleted

Free Powerpoint Templates
Page 38

Solution:

FRONT=2, REAR=4 QUEUE: _ A C D _ _

(a) FRONT=2, REAR=5 QUEUE: _ A C D F_

(b) FRONT=4, REAR=5 QUEUE: _ _ _ D F _

(c) REAR=2, FRONT=4 QUEUE: L M _ D F K

(d) FRONT=6, REAR=2 QUEUE: L M _ _ _ K

(e) FRONT=6, REAR=3 QUEUE: L M R_ _ K

(f) FRONT=2, REAR=3 QUEUE: _M R _ _ _

(g) REAR=4, FRONT=2 QUEUE: _ M R S _ _

(h) FRONT=4, REAR=4 QUEUE: _ _ _ S _ _

(i) FRONT=REAR=0 [As FRONT=REAR, queue is empty]

(j) Since FRONT=NULL, no deletion can take place. Underflow

occurred

14-10-2022

1

CIRCULAR QUEUE IMPLEMENTATION

� After Rear reaches the last position, i.e. MAX-1 in

order to reuse the vacant positions, we can bring rear

back to the 0th position, if it is empty, and continue

incrementing Rear in same manner as earlier. Thus

Rear will have to be incremented circularly.

� For deletion, Front will also have to be incremented

circularly.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Enqueue(Insert) operation on Circular Queue

� Step 1: IF (REAR+1)%MAX = FRONT
Write " OVERFLOW "
Goto step 4
[End OF IF]

� Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = REAR = 0
ELSE IF

� REAR = MAX - 1 and FRONT ! = 0
SET REAR = 0
ELSE
SET REAR = (REAR + 1) % MAX
[END OF IF]

� Step 3: SET QUEUE[REAR] = VAL

� Step 4: EXIT

Dr. Sunil Kumar, CSE Dept., MIET Meerut

14-10-2022

2

Dequeue (Delete) operation on Circular Queue

� Step 1: IF FRONT = -1
Write " UNDERFLOW "
Goto Step 4
[END of IF]

� Step 2: SET VAL = QUEUE[FRONT]

� Step 3: IF FRONT = REAR
SET FRONT = REAR = -1
ELSE
IF FRONT = MAX -1
SET FRONT = 0
ELSE
SET FRONT = FRONT + 1
[END of IF]
[END OF IF]

� Step 4: EXIT

Dr. Sunil Kumar, CSE Dept., MIET Meerut

PRIORITY QUEUE

� A priority Queue is a collection of elements where

each element is assigned a priority and the order

in which elements are deleted and processed is

determined from the following rules:

1) An element of higher priority is processed before any

element of lower priority.

2) Two elements with the same priority are processed

according to the order in which they are added to the

queue.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

14-10-2022

3

The priority queue implementation

� The priority queue is again implemented in two

way:

1. Array/Sequential Representation

2. Dynamic/Linked Representation

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Array Representation of Priority Queue

� One way to maintain a priority queue in memory is to use a separate queue for
each level of priority. Each such queue will appear in its own circular array and
must have its own pair of pointers, FRONT and REAR.

� If each queue is allocated the same amount of space, a two dimensional array
QUEUE can be used instead of the linear arrays for representing a priority
queue.

� If K represents the row K of the queue, FRONT[K] and REAR[K] are the front
and rear indexes of the Kth row.

1 2 3 4 5 6

1 A

2 B C X

3

4 F D E

5 G

P
ri

o
ri

ty

14-10-2022

4

Linked list representation of a priority queue

� Another way to maintain a priority queue in memory is
by means of a one-way list. Each node in list will
contain three items of information: an information
field INFO, a priority number PRN and a link field LINK.

� A node X precedes a node Y in list

� If X has higher priority than Y

� Or when both have same priority but X was added to list before
Y

Example

� Input

• output

17-10-2022

1

Double Ended Queue

� Double Ended Queue is also a Queue data structure in which the
insertion and deletion operations are performed at both the ends
(front and rear).

� That means, we can insert at both front and rear positions and can
delete from both front and rear positions.

Double Ended Queue

� Double Ended Queue can be represented in TWO
ways, those are as follows:

� Input Restricted Double Ended Queue

� Output Restricted Double Ended Queue

17-10-2022

2

Input Restricted Double Ended Queue

� In input restricted double-ended queue, the
insertion operation is performed at only one
end and deletion operation is performed at
both the ends.

Output Restricted Double Ended Queue

� In output restricted double ended queue, the
deletion operation is performed at only one
end and insertion operation is performed at
both the ends.

17-10-2022

3

Question: Consider the following deque of characters where DEQUE is a
circular array which is allocated six memory cells.

LEFT=2, RIGHT=4 DEQUE: _ A,C,D, _ , _
Describe deque while the following operation take place:

(a) F is added to right of deque

(b) Two letters on right are deleted

(c) K,L and M are added to the left of the deque

(d) One letter on left is deleted.

(e) R is added to the left of deque

(f) S is added to right of deque

(g) T is added to the right of deque

Answer:

(a) F is added to right of deque

LFET=2, RIGHT=5 _A C D F _

(b) Two letters on right are deleted

LEFT=2 RIGHT=3 _A C _ _ _

(c) K,L and M are added to the left of the deque

LEFT=5 RIGHT=3 K A C _ M L

(d) One letter on left is deleted.

LEFT=6 RIGHT=3 K A C _ _ L

(e) R is added to the left of deque.

LEFT=5 RIGHT= 3 K A C _ R L

(f) S is added to right of deque

LEFT=5 RIGHT= 4 K A C S R L

(g) T is added to the right of deque

Since LEFT= RIGHT+1, the array is full and hence T cannot be
added to the deque

17-10-2022

4

Insert Elements at Front
� First we check if the queue is full. If its not full we insert an element at

front end by following the given conditions :

� If the queue is empty then initialize front and rear to 0. Both will point to

the first element.

Else we decrement front and insert the element. Since we are using circular

array, we have to keep in mind that if front is equal to 0 then instead of

decreasing it by 1 we make it equal to SIZE-1.

Insert Elements at Front

void Dequeue :: push_front(int key)

{

if(full())

{

printf("OVERFLOW\n“);

}

else

{

//If queue is empty

if(front == -1)

front = rear = 0;

//If front points to the first position
element

else

if(front == 0)

front = SIZE-1;

else

--front;

arr[front] = key;

}

}

17-10-2022

5

Insert Elements at Rear

� Again we check if the queue is full. If its not full we insert an element at

back by following the given conditions:

� If the queue is empty then initialize front and rear to 0. Both will point to

the first element.

� Else we increment rear and insert the element. Since we are using circular

array, we have to keep in mind that if rear is equal to SIZE-1 then instead of

increasing it by 1 we make it equal to 0.

Insert Elements at Rear
void Dequeue :: push_back(int key)

{

if(full())

{

printf("OVERFLOW\n”);

}

else

{

//If queue is empty

if(front == -1)

front = rear = 0;

//If rear points to the last element

else

if(rear == SIZE-1)

rear = 0;

else

++rear;

arr[rear] = key;

}

}

17-10-2022

6

Delete Elements At Front

� In order to do this, we first check if the queue is empty. If its not then

delete the front element by following the given conditions :

� If only one element is present we once again make front and rear equal to -1.

� Else we increment front. But we have to keep in mind that if front is equal to

SIZE-1 then instead of increasing it by 1 we make it equal to 0.

Delete Elements At Front

void Dequeue :: pop_front()

{

if(empty())

{

printf("UNDERFLOW\n“);

}

else

{

//If only one element is present
if(front == rear)

front = rear = -1;

//If front points to the last element

else

if(front == SIZE-1)

front = 0;

else

++front;

}

}

17-10-2022

7

Delete Elements At Rear
� In order to do this, we again first check if the queue is empty. If its not

then we delete the last element by following the given conditions :

� If only one element is present we make front and rear equal to -1.

� Else we decrement rear. But we have to keep in mind that if rear is equal to 0

then instead of decreasing it by 1 we make it equal to SIZE-1.

Delete Elements At Rear

void Dequeue :: pop_back()

{

if(empty())

{

printf("UNDERFLOW\n)";

}

else

{

//If only one element is present
if(front == rear)

front = rear = -1;

//If rear points to the first position
element

else

If(rear == 0)

rear = SIZE-1;

else

--rear;

}

}

