9/19/2022

DATA STRUCTURE USING C
(KCS 301)

By:
Dr. Sunil Kumar
Professor, CSE Dept.
MIET, Meerut

Part I: Stacks
Part II: Recursion
Part III: Queues

@Sunil Kumar, CSE Dept., MIET Meerut J

9/19/2022

UNIT 2 - Part I: Stacks

@Sunil Kumar, CSE Dept., MIET Meerut j

Topics Covered
* Definition of Stack
e Stack operations: Push & Pop
e Implementation of Stack in C
e Array Implementation
e Linked List Implementation
* Applications of Stack:
e Expression Conversion
Infix to Postfix Conversion
Infix to Prefix Conversion
e Expression Evaluation
Evaluation of Postfix Expression
Evaluation of Prefix Expression

a
STACKS

® A Stack is a linear data structure in which items are added
or removed only at one end.

* Everyday examples of such a data structure are:
® A Stack of cups

® A stack of cafeteria trays

e A stack of coins
® Works on the principle of LIFO

® In particular, the last item to be added to Stack is the first
item to be removed

¢ STACKS are also called “PILES” AND “PUSH- DOWN”

@Sunil Kumar, CSE Dept., MIET Meerut

<
3(

g

top —>

A stack of
cafeteria trays

(

(

\Qj

A stack of cups

\e A stack of coins

9/19/2022

\
Operations On Stack
e PUSH: is the term to insert an element into a stack
® POP: is the term to delete an element from a stack
° Example: Suppose the following 6 elements are pushed in
order onto an empty stack
° A,B,C,D,EF A
® This means: B
e E cannot be deleted before C F
F is deleted, D E
* D cannot be deleted before E D
E and F is deleted and so on. F | TOP c
B
@Sunil Kumar, CSE Dept., MIET Meerut A /
\
Example: When the elements are inserted in the order as
A,B,C,D then the size of the stack is 4 and the top most element
in the stack is D.
When deletion operation is performed on stack continuously then
the order in which the elements are deleted is D,C,B,A.
U U Uﬁ 2 [
B B
A
A
@Sunil Kumar, CSE Dept., MIET Meerut /

9/19/2022

9/19/2022

Example : Here Stack Size is 4
3 3 3
2 2 2
1 1 TOP-> 1 20
0 TOP-> 10 0 10
TOP=-1 Push 10 Push 20
(Empty stack)
3 TOP->3 40 TOP-> 3 40
TOP->2| 30 2] 30 2| 30
1 20 1 20 1 20
ol 10 oL 10 o 10
Push 40 Push 50
Push
ush 30 (Overflow)
@Sunil Kumar, CSE Dept., MIET Meerut /
TOP->3 40 3 3
2] 30 TOP->2| 30 2
1 20 1 20 TOP-> 1 20
0 10 0 10 0 10
pop pop pop
3 3
2 2
1 1
TOP-> 0 10 0
pop pop (TOP=-1)
underflow
@Sunil Kumar, CSE Dept., MIET Meerut /

9/19/2022

POSTPONED DECISIONS

® Stacks are frequently used to indicate the order of the
processing of data when certain steps of the processing

must be postponed until other conditions are fulfilled.

>0

@Sunll Kumar, CSE Dept., MIET Meerut /

9/20/2022

Array Implementation of Stack

Algorithm for inserting element into the stack:

Algorithm push()
1. if top=(SIZE-1)
then write (‘stack overflow’)

else

2. read item or data
3. top«—top+1

4. stack[top]«— item
5. stop —| 0

—
top =-1

@Sunll Kumar, CSE Dept., MIET Meerut /

Array Implementation of Stack...
Algorithm for deleting elements from the stack:

Algorithm pop()
1. if top=-1
then write (‘stack underflow’)
else
2. item «— stack[top]
3. top « top-1
4. stop

@Sunll Kumar, CSE Dept., MIET Meerut /

Array Implementation of Stack...
Display of Stack:

Algorithm for displaying/printing the contents of
stack after push and pop operations.

Algorithm print()
1.if top=-1
then write (‘stack empty’)
2. Repeat fori «— top to 0
print(stack[i])
3. stop

@Sunil Kumar, CSE Dept., MIET Meerut

#include<stdio.h> switch(choice)
#include<conio.h> {
case 1:
void push(int); printf("Enter the value to be insert: ");
void pop(); scanf("%d",&value);
void display(); push(value);
int stack[30], top = -1; break;
void main() case 2: pop(); break;
{ case 3: display(); break;
int value, choice; case 4: exit(0);
clrser(); default: printf("\nWrong choice");
while(1)
{ }
printf("\n\n*##*# MENU *#**##\n"); }

printf("1.Push\n2.Pop\n3. Display\n4. Exit"); }
printf("\nEnter your choice: ");
scanf("%d",&choice);

@Sunil Kumar, CSE Dept., MIET Meerut

9/20/2022

void push(int value)

{ if(top == SIZE-1)
printf("\nStack is Full!");

else

{

top++;

stack[top] = value;
printf("\nInsertion success!!!");
}

}

@Sunil Kumar, CSE Dept., MIET Meerut

void pop()

{

if(top ==-1)
printf("\nStack is Empty!");
else

{

printf("\nDeleted : %d", stack[top]);

top--;
}
1

void display()

{
if(top ==-1)

printf("\nStack is Empty!!!");

else

{

int i;

printf(\n"Stack elements are:\n");

for(i=top; 1>=0; i--)
printf(" %d\n",stack[i]);

}
}

@Sunil Kumar, CSE Dept., MIET Meerut

9/20/2022

9/20/2022

Linked List Implementation of Stack

* Disadvantage of using an array to implement a stack or
queue is the wastage of space.

* Implementing stacks as a linked lists provides a
feasibility on the number of nodes by dynamically
growing stacks, as a linked list is a dynamic data
structure.

» The stack can grow or shrink as the program demands
it.

* A variable top always points to top element of the
stack.

» Iftop = -1, it specifies stack is empty.

@Sunil Kumar, CSE Dept., MIET Meerut /

Linked List Implementation of Stack...

Push Operation:

* The push operation is used to insert an element into
the stack.

* The new element is added at the topmost position of the
stack.

i 7| P3| | 2| 6| 5 |X
TOP
Linked Stack
@Sunil Kumar, CSE Dept., MIET Meerut /

Linked List Implementation of Stack...

* Toinsert an element with value 9, we first check if
TOP=-1.

 |f this is the case, then we allocate memory for a new
node, store the value in its DATA part and NULL in its
NEXT part.

* The new node will then be called TOP.

* If TOP!=-1, then we insert the new node at the
beginning of the linked stack and name this new
node as TOP.

g P 1| T P3| | 2] 6| 45X

TOP
@ Linked stack after inserting a new node

~

Algorithm: To Push an element into a linked stack

Step 1: Allocate memory for the new
node and name it as NEW

Step 2: SET NEW -> DATA = VALUE

Step 3: IF TOP = NULL

SET NEW -> NEXT = NULL
SET TOP = NEW
ELSE
SET NEW-> NEXT = TOP
SET TOP = NEW
[END OF IF]

Step 4: END

@Sunil Kumar, CSE Dept., MIET Meerut

~

9/20/2022

Linked List Implementation of Stack...

Pop Operation:

* The pop operation is used to delete an element
into the stack.

* The element is deleted at the topmost position of the
stack.

* However, before deleting the value, we must first
check if TOP=-1, because if this is the case, then it
means that the stack is empty and no more deletions
can be done.

@Sunil Kumar, CSE Dept., MIET Meerut

Linked List Implementation of Stack...

* If an attempt is made to delete a value from a stack
that is already empty, an UNDERFLOW message is
printed.

* In case TOP!=-1, then we will delete the node
pointed by TOP, and make TOP point to the
second element of the linked stack. Thus, the
updated stack becomes like this.

1= 7| =3 4| 2| 6| 5|
TOP

Linked stack after deleting a node

@Sunil Kumar, CSE Dept., MIET Meerut

9/20/2022

Algorithm To Pop an element into a linked stack

Step 1: IF TOP= NULL
PRINT “UNDERFLOW”
Goto Step 5
[END OF IF]
ELSE
Step 2: SET PTR = TOP

Step 3: SET TOP = TOP->NEXT

Step 4: FREE PTR

Step 5: END

@Sunil Kumar, CSE Dept., MIET Meerut

o

/* write a ¢ program to implement stack using linked list */
#include<stdio.h> #include<malloc.h> #include<stdlib.h>

int push(); int pop(); int display();
int choice,i,item;
struct node {
int data;
struct node *link;
}*top, *new, *ptr;
main() { top=-1;
printf("\n***Select Menu***\n");
while(1) {
printf("\n1.Push \n2.Pop \n3.Display \n4.Exit");
printf("\n\nEnter your choice: ");
scanf("%d",&choice);

switch(choice) {
case1: push(); break;
case2: pop(); break;
case3: display(); break;

case4: exit(0);
default: printf("\nWrong choice");
}/* end of switch */
}/* end of while */

}/* end of main */

9/20/2022

int push()

{
new=malloc(sizeof(struct node));
printf("\nEnter the value of item: ");
scanf("%d",&item);
new->data=item;
if(top==NULL)
{

new->link=NULL;

new->link=top;
}
top=new;
return;
}/* end of insertion */

@Sunil Kumar, CSE Dept., MIET Meerut

int pop()
{
if(top ==NULL)
{
printf("\n\nStack is empty");
return;
it
else
{
printf("\n\nThe deleted element
is: %d" top->data);
top=top->link;
}
return;
}/* end of pop() */

int display()

{
ptr=top;
if(top= =NULL)
{

return;

}

while(ptr!=NULL)

{

printf("\n %d",ptr->data);
ptr=ptr->link;

}/* end of while */
return;

}/* end of display™*/

@Sunil Kumar, CSE Dept., MIET Meerut

printf("\nThe listis empty");

printf("\nThe elements in the stack are: ");

9/20/2022

Applications of Stack

1. Expression Conversion and Evaluation
2. Backtracking

3. Function Call

4. Parenthesis Checking

5. String Reversal

6. Syntax Parsing

7. Memory Management

@Sunil Kumar, CSE Dept., MIET Meerut

Applications of Stack...

- Arithmetic Expression Conversion
and Evaluation
Infix to Postfix Conversion
Evaluation of Postfix Expression
Infix to Prefix Conversion
Evaluation of Prefix Expression

\\@Sunil Kumar, CSE Dept., MIET Meerut

p
Arithmetic Expressions

® Precedence Level

* Highest Exponentiation () i
* Next Highest Multiplication (*) and Division (/)
* Lowest Addition (+) and subtraction (-)

¢ Infix Notation

A+B C-D (G / H)+A

® Polish Notation (Prefix Notation)
+AB - CD (/ GH) +A = + / GHA

® Reverse Polish Notation (Postfix or Suffix Notation)
AB + CD - GH /A +

@Sunil Kumar, CSE Dept., MIET Meerut

Arithmetic Expressions Conversion

Note:

v' In infix to postfix conversion, same precedence operators
can’t remain on to the Stack at the same time, while in
infix to prefix conversion, same precedence operators can

remain onto the Stack at the same time.

@Sunil Kumar, CSE Dept., MIET Meerut

/ INFIX TO RPN CONVERSION

Algorithm to convert infix expression to RPN:
1. Initialize an empty stack.

2. Repeat the following until the end of the infix expression is reached.

1. Get next input token (constant, variable, arithmetic operator, left parenthesis,
right parenthesis) in the infix expression.

2. If the token is
1. A left parenthesis: Push it onto the stack.
2. A right parenthesis:

1. Popand display stack elements until a left parenthesis is on the top of
the stack.

2. Pop the left parenthesis also, but do not display it.
3. An operator:

1. While the stack is nonempty and token has lower or equal priority than
stack top element, pop and display.

2. Push token onto the stack.
4. An operancl: Display it.

3. When the end of the infix expression is reached, pop and display stack items until
the stack is empty.

@ (Note: Left parenthesis in the stack has lowest priority)

~ INFIX TO RPN CONVERSION - DEMO

Expression: Output:
1. Scan a token.
3 % (I - 2) + > 1. 3isan operand.
2. Display 3.

2. Scan next token.
1. *isan operator.
2. Push * onto stack.
3. Scan next token.

Z > n -

1. (--- left parenthesis.
2. Push (onto stack.
4. Scan next token.

1. 9isan operand.
2. Display 9.

5. Scan next token.

1. —isan operator.
2. Priority > that of (.
3. Push-—.

6. Scan next token.

1. 2is an operand.
2. Display 2.

7. Scan next token.

1.) --- right parenthesis.
K 2. Pop and push until (is got. /

~ INFIX TO RPN CONVERSION - DEMO

Expression: Output: | 3 9 2

+ 5 8. Scan next token.

+ 1s an operator.
Priority of + less than that of *
Pop * and display.
Stack 1s empty.
Push +

9. Scan next token.
5 1s an operand.
Display.

10. Scan next token.
End of expression.

- Pop all elements and display.

Z > n -

/

INFIX TO POSTFIX USING STACK

B EXAMPLE: Convert A * B + C into Postfix Expression

A

1 A

2 * * A

3 B * AB

4 + + AB*

5 C + AB*C
6 AB*C+

@Sunil Kumar, CSE Dept., MIET Meerut

/

INFIX TO POSTFIX USING STACK...

E EXAMPLE: A + B * C into Postfix Expression

A

1 A

2 + A

3 B + AB

4 o + * AB

5 C + * ABC

6 i ABC*
7 ABC*+

@Sunil Kumar, CSE Dept., MIET Meerut

/

1 A

2 * *

3 (*(
4 B *(
5 + *(+
6 C *(+
7) *

8

@Sunil Kumar, CSE Dept., MIET Meerut

INFIX TO POSTFIX USING STACK...

E EXAMPLE: A * (B + C) into Postfix Expression

A

A

A

AB

AB
ABC
ABC+
ABC+*

/

INFIX TO POSTFIX USING STACK...

E EXAMPLE: A*B ” C + D into Postfix Expression

A

1 A

2 * * A

3 B * AB

4 A il AB

5 C il ABC

6 + + ABCH*

7 D + ABC"**D
8 ABC**D +

@Sunil Kumar, CSE Dept., MIET Meerut

-

(-

INFIX TO POSTFIX USING STACK...

B EXAMPLE: A * (B+ C * D)+ E into Postfix Expression

1

2 * * A

3 *(A

4 B *(AB

5 + *(+ AB

6 C *(+ ABC

7 * (4% ABC

8 D *(+* ABCD

9) * ABCD*+

10 + + ABCD*+*

11 E + ABCD*+*E
ABCD*+*E +

INFIX TO POSTFIX USING STACK...

EEXAMPLE : CONVERT 2*3/(2-1)+5*3 into Postfix Expression

2

1 2
2 *
3 3
4 /
5 (
6 2
7 -
8 1
9)
10 +
11 5
12 &

e
)
w

*

*

/
/(
/(

/C
/C

+%

4%

23
23*

23*

23%2

23%2

23*21
23*21-
23*21-/
23*21-/5
23*21-/53
23*21-/53
23%21-/53%+

INFIX TO POSTFIX USING STACK...

E EXAMPLE : CONVERT (A+B)"C-(D*E)/F into Postfix Expression

1 (
2 A
3 +
4 B
5)
6 A
7 C
8 -
9 (
10 D
11 =
12 E
13)
14/

F

B
o

(
(

Empty

A

A

AB

AB+

AB+

AB+C
AB+C*
AB+C*
AB+C"D
AB+C"D
AB+C"DE
AB+C"DE*
AB+C"DE*
AB+C"DE*F
AB+C”DE*F/-

~

9/21/2022

a N
INFIX TO POSTFIX USING STACK...
EXAMPLE : CONVERT A+ (B *C- (D/E{fF) *G)*H)

e
S

2 + + A

3 (+(A

4 B +(AB

5 * +(* AB

6 c +(* ABC

7 +(- ABC*

8 (+(- ABC*

9 D +(- ABC*D
10 / +(-(/ ABC*D
11 E +(-(/ ABC*DE

o)

a N
INFIX TO POSTFIX USING STACK...
EXAMPLE : CONVERT A+(B *C- (D/EtF) *G)*H

pomnsne svumo| oFmarox st [[posTrcnemsson |

- 1 +(-(/1 ABC*DE

13 F +(-(/1 ABC*DEF

14) +(- ABC*DEF 1/

15 & +(-* ABC*DEF1/

16 G +(-% ABC*DEF1/G

17) + ABC*DEF1/G*-

18 * + ABC*DEF1/G *-

19 H + ABC*DEF1/G*-H

20 + ABC*DEF1/G*-H*

21 Empty ABC*DEF1/G*-H*+

o)

9/21/2022

Convert: (9 - ((3 * 4) + 8) / 4) into Postfix Expression

SNO. |CURRENT SYMBOL | OPERATOR STACK | POSTFIX EXPRESSION
1 ((
2 9 (9
3 - (- 9
4 ((9
5 ((-((9
6 3 -((93
7 * (" 93
8 4 (" 934
9) (934+
10 B (-(+ 934+
11 8 (-(+ 934+*8
12) (- 934*8+
13 / -/ 934*8+
14 4 (-/ 934*8+4
) 934*8+4/-

(]

9/21/2022

Infix to Prefix Conversion

* Given Infix - (A+B)*C-(D*E)/F

* Step 1: Reverse the infix string. Note that while
reversing the string you must interchange left and right
parentheses.

* Step 2: Obtain the prefix expression of the infix

expression.

@Sunil Kumar, CSE Dept., MIET Meerut

Infix to Prefix Conversion...
¢ Given Infix - (A+B)*C-(D*E)/F

e String after reversal — F/) E¥XD(")B+A(

° String after interchanging right and left
parenthesis — F/ (E¥XD)"(B+A)

@Sunil Kumar, CSE Dept., MIET Meerut

9/21/2022

INFIX TO PREFIX USING STACK
B EXAMPLE: (A+B)*C-(D*E)/F
' SNo CURRENTSYMBOL OPERATORSTACK PREFIXSTRING
1 F Empty F
2 / / F
3 (/(F
4 E /(EF
5 & /(* EF
6 D /(* DEF
7) / *DEF
8 . - /*DE F
9 C o C/*DE F
10 A - A C/*DE F
1 (- A C/*DE F
12 B - A (BC/*DE F
13 + - A(+ BC/*DE F
14 A - A (+ ABC/*DE F
15) o & +ABC/*DE F
e 16 - A+ABC/*DE F
. 17 Empty -A+ABC/*DEF “)
INFIX TO PREFIX USING STACK
B EXAMPLE: A*B +C
1 C C
2 + +
3 B + BC
4 E + * BC
5 A + * ABC
6 + *ABC
+*ABC
o y

9/21/2022

9/21/2022

INFIX TO PREFIX USING STACK

B EXAMPLE: A+B*C

C

1 C

2 * * C
3 B & BC
4 + + *BC
5 A + A*BC
6 +A*BC

INFIX TO PREFIX USING STACK

B EXAMPLE: A * (B + C)

1 ((Empty
2 C (c

3 + + BC
4 B + BC
B) “) +BC
6 w & +BC
7 A * A+BC
8 *A+BC

9/21/2022

N O U1 N e

INFIX TO PREFIX USING STACK

E EXAMPLE:A-B+C

C

+

+ + + + o+
5|6

C

C

BC

BC
ABC
-ABC
+ABC

R N O 1A WN e

INFIX TO PREFIX USING STACK

> *x W > 0 + ©

B EXAMPLE: A*B~C+D

+
+
+AN
+A
+*

+*

D
D
(00))
CD
BCD
~"BCD

A"BCD
+*A*BCD

/

O 0 N O U1 & WIN =

INFIX TO PREFIX USING STACK

B EXAMPLE: A * (B + C*D) + E

E

+ +

(+(
D +(
* +(*
C +(*
+ +(+
B +(+
) +

* +*
A +

E
E
E
DE
DE
CDE
*CDE
B*CDE
+B*CDE
+B*CDE
A+B*CDE
+*A+B*CDE

9/21/2022

EVALUATION OF RPN EXPRESSION

Algorithm evaluateRPN(expression)

1. Initialize an empty stack.

2. Do
1. Get next token (constant, variable, arithmetic operator) in RPN expression.
2. If token is an operand, push it on the stack.
3. Iftoken is an operator do the following:

1. Pop top two values from the stack. (If the stack does not contain two items, report
error.)

2. Apply operator token to these two values.
3. Push the resulting value onto the stack.
3. Until the end of the expression is encountered.

4. The value of the expression is on the top of the stack (and stack should contain only
this value).

@Sunil Kumar, CSE Dept., MIET Meerut

EVALUATION OF RPN EXPRESSION - DEMO
Expression:
2 4 * 9 5 + -

1. Scan a token.
1. 21is an operand.
2. Push 2 onto stack.
2. Scan next token.
1. 41is an operand.
2. Push 4 onto stack
8 3. Scan next token.
1. *1is an operator.
2. Pop from stack --- 4.
3. Pop from stack --- 2.
4. Apply * on the operands.
5. Push result 8 onto stack.
4. Scan next token.
1. 9is an operand.
2. Push 9 onto stack.

Z. P 2 J

@ Top -
N

9/26/2022

9/26/2022

EVALUATION OF RPN EXPRESSION - DEMO

Expression:

Ze>Qwn-

Top -

14

1.

Scan a token.

1.
2.

2 is an operand.
Push 2 onto stack.

Scan next token.

1.
2.

4 is an operand.
Push 4 onto stack

Scan next token.

1.
2.
3.

4

5.

*is an operator.

Pop from stack --- 4.
Pop from stack --- 2.

. Apply * on the operands.

Push result 6 onto stack.

Scan next token.

1.
2.

9 is an operand.
Push 9 onto stack.

Scan next token.

1.
2.

5 is an operand.
Push 5 onto stack.

Scan next token.

S .

1
2
3.
4.
5
C
1
2

+ is an operator.
Pop

Pop

Apply +

Push result.

an next token.

- is an operand.

Pop, pop, apply -, push result.

Expression:

Top —

Z>aQwn-

1.

EVALUATION OF RPN EXPRESSION - DEMO

Scan a token.

1.
2.

2 is an operand.
Push 2 onto stack.

Scan next token.

1.
2.

4 is an operand.
Push 4 onto stack

Scan next token.

1.
2.
3.

4

5.

*is an operator.

Pop from stack --- 4.
Pop from stack --- 2.

. Apply * on the operands.

Push result 6 onto stack.

Scan next token.

1.
2.

9 is an operand.
Push 9 onto stack.

Scan next token.

1.
2.

5 is an operand.
Push 5 onto stack.

Scan next token.

1.
2.
3.

4

5.

+ is an operator.
Pop

Pop

. Apply +

Push result.

Scan next token.

1.
2.

- is an operand.

Pop, pop, apply -, push result.

9/26/2022

Expression:

Top —

1.

Z»>aQwn-

EVALUATION OF RPN EXPRESSION - DEMO

Scan a token.

1.
2.

2 is an operand.
Push 2 onto stack.

Scan next token.

1.
2.

4 is an operand.
Push 4 onto stack

Scan next token.

1.
2.
3.
4.
5.

*is an operator.

Pop from stack --- 4.
Pop from stack --- 2.
Apply * on the operands.

Push result 6 onto stack.

Scan next token.

1.
2.

9 is an operand.
Push 9 onto stack.

Scan next token.

1.
2.

5 is an operand.
Push 5 onto stack.

Scan next token.

1.
2.
3.
4.
5.

+ is an operator.
Pop

Pop

Apply +

Push result.

Scan next token.

1.
2.

- is an operand.

Pop, pop, apply -, push result.

Scan next token

1.
2.

End of expression
Pop and display

Evaluation of Postfix Expression...

e Evaluate:5,6,2,+,*,12,4,/,-

Symbol scanned |Stack
5 3
6 5, 6
2 5, 6, 2
+ 5, 8
* 40
12 40,12
4 40,12,4
/ 40,3
= 37

9/26/2022

Evaluation of Postfix Expression...

e Evaluate: 6324 + —=*

Symbol scanned |Stack
6 6
3 6, 3
2 6, 3, 2
4 6, 3, 2, 4
+ 6, 3, 6
- 6,-3
* -18

e Evaluate:934*8+4 /-

Evaluation of Postfix Expression...

Symbol scanned |Stack
9 9
3 9, 3
4 9, 3, 4
* 9, 12
8 9, 12, 8
+ 9, 20
4 9, 20, 4
/ 9, 5
= 4

9/26/2022

e Evaluate: 234+ *5 *

Evaluation of Postfix Expression...

Symbol scanned |Stack
2 2
3 2, 3
4 2, 3, 4
+ 2, 7
* 14
5 14, 5
* 70

@Sunil Kumar, CSE Dept., MIET Meerut

e Evaluate: 623 +-382/+%213+

Evaluation of Postfix Expression...

Symbol scanned | Stack

6 6

2 62

3 623

+ 65

- 1

3 13

8 138

2 1382

/ 134

+ 17

* 7

2 72

i 49

3 493
@ + 52

9/26/2022

Evaluation of Prefix Expression...

e Evaluate:-*+4325

Symbol scanned |Stack
5 5
2 5, 2
3 S, A, 8
4 5,2, 3, 4
+ 8, A, U
* 5, 14
- 9

Evaluation of Prefix Expression...

e Evaluate: +3+4 /420

Symbol scanned |Stack
20 20
4 20, 4
/
4 5, 4
9, 3
+ 12

Evaluation of Prefix Expression...

e Evaluate:- * + 4 3 2 15

Symbol Scanned |Stack
15 15
2 15, 2
3 18, A, 3
4 15, 2, 3, 4
+ 18, 2, U
* 15, 14
- -1

9/26/2022

26-09-2022

<a

UNIT 2 - Part II: Recursio

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Table of Contents

e [teration and Recursion
* Principle of Recursion

examples such as:
— Factorial Numbers
— Fibonacci Numbers
— Binary Search

— Tower of Hanoi

e Tail Recursion
¢ Removal of Recursion
¢ Tradeoffs between Iteration and Recursion

Dr. Sunil Kumar, CSE Dept., MIET Meerut V4

lteration Vs Recursi

Principle of Recursic

* A definition is recursive if it is defined 1
itself.

* Recursion is a process by which a function. ¢
repeatedly, until some specified condition
satisfied. X

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

smaller sub problems so that they could be‘ :
recursively.

+ The most important advantage is that recurS|on)i
algorithm and its implementation simple and compactf”

* Itincreases programmer efficiency.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example: Factorial Furi ' , -.

 In general, we can express the fac
functlon as follows:

=n * (n-1)!
* |s this correct? Well... almost.

« The factorial function is only definédx"f'
positive integers. So we should be a b &
more precise:

n!'=1 (if n is equal toOor_fi)
n!'=n*(n-1)! (if nis larger than 1)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

26-09-2022

Factorial Function |

The C equivalent of this definitic;"_h ;

int fac(int numb) {
if (numb<=1)
return 1;

else

Dr. Sunil Kumar, CSE Dept., MIET Meerut g

Factorial Functlon\ |

+ Assume the number typed is 3, that is, numbl :
fac (3)

3<=17? No.
fac(3) = 3 * fac(2)
fac(2) :
2 <=17 No.
fac(2) = 2 * fac(1l) ~
fac(1l) :
1<=17? Yes.
return 1 int fac(int numb) {
fac(2) =2 * 1 =2 if (numb<=1)
return fac(2) return 1;
else

fac(3) =3 * 2 =6 return numb * fac(n _

return fac(3) }

fac(3) has the value 6

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Factorial Function |

For certain problems (such as the factorial ‘fun
recursive solution often leads to short and eleg
Compare the recursive solution with the W
solution: \

Recursive Solution Iterative Solufie
int fac(int numb) { int fac (int'. num
if (numb<=1) int product=l
return 1; while (numb>1),.
else a "
return numb*fac (numb-1); product
} numb--—;

} !

return produc;;

26-09-2022

* Fibonacci Numbers:
|
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, .

» Recursive definition:
- F(0) = 0;
-F(1) = 1; i
— F (number) = F (number-1)+ F (number—g!) .

Dr. Sunil Kumar, CSE Dept., MIET Meerut

&F

int fib (int number)
{
if (number = 0) return O;
if (number = = 1) return 1;
return (fib (number-1) + fib (number-2));

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

Fib, Fib(4)

Fib(3) Fib(2)

AN AN

Fibp_» Flbn 3 Flbn 4 Flbn_4 Fib(2) [+ | .Flb(l) Flb(l) . F1b(0)

Fibp_3 [+ | Fibp4 Fibl(l) Fil;)(O)

(a) Fib(n) (b) Fib(4)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Trace a Fibonacci Nun b

£ib(n

(num ==

» Assume the input number is 4, that is, num=4:

fib (4) : (num
4 == 0 ? No; 4 == 1? No. (£ib (num-1)
fib(4) = fib(3) + fib(2)
fib(3) :

3 ==0 ? No; 3 == 1? No.
fib(3) = fib(2) + fib (1)
fib(2) : »

Fnb(3) Fib(2)

2 == 0? No; 2==17? No.
fib(2) = f£ib/1l)+£fib (0)
fib(1) :
1==0 ? Noj 1 == 1? Yes. F1b(2).F1h(]) Flb(l).Flb(O)
£ib(1) = 1;
£ib(1); /\
Flb(l) . Flb(())

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

Trace a Fibonacci

fib(0) :
0 ==0? Yes.
fib(0) = 0;
fib (0);
fib(2) =1 + 0 = 1;
fib(2);
fib(3) = 1 + fib(1)
£fib (1) :
1l ==07? No; 1 == 17? Yes
fib(1) = 1;
fib(1);
fib(3) =1 + 1 = 2;
fib (3)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Fib(2)

Fib(3)

» 4
Fib(2) Fib(1) Fib(1) Fib(0)
11 l] 1] 10

A

[4
Fib(1) [+ | Fib(0)
11 lllo

fib(2) :
2 ==
fib (2)
fib (1) :

No; 2 == 1?

? No; 1 == 17
1;

fib(1);

0
£ib (1)

£ib(0) :
0==07v?

£ib (0)

Yes.
0;
£ib (0);
=1+ 0 =
£fib(2);
£fib(3) + £ib(2)
=2+ 1= 3;
fib (4);

£ib (2) 1;

£fib (4)

Trace a Fibonacci Numbe

fib (1) + £ib(0)

No.

Yes.

Aﬁ

Fib(2) .Flb(l) Fnb(l) . Flb(O)

Fib(1) [+ | Fib(0)
1 II 0

26-09-2022

Example: Fibonacci Nun{; 0

//Calculate Fibonacci numbers iteratively |
//much more efficient than recursive solutia

int fib(int n)
{
int £[100];
f£[0] = O;
f[1] = 1;
for (int i=2; i<= n; i++)
f[i] = £f[i-1] + f[i-2];
return f[n];

Dr. Sunil Kumar, CSE Dept., MIET Meerut

— Search for an element in an array
» Sequential search
* Binary search

— Binary search

element of the array

« If not equal, then apply binary search to half
array (if not empty) where the search element ,
would be. 4

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

Binary Search with Recij s

// Searches an ordered array of integers using recur
int bsearchr (int datal], // input: array |
int first, // input: lower h-

int last, // input: upper ﬁq_f

int value // input: value to |

)// output: index if found, otherwise returmn)

int middle = (first + last) / 2;
if (data[middle] == value)
return middle;
else if (value < data[middle])
return bsearchr(data, first, middle-1, value);
else
return bsearchr(data, middle+1, last, value);

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Binary Search without Rec'%;f

// Searches an ordered array of integers

int bsearch(int data[8]; // input: array
int size; // input: array size
int value; // input: value to find "
) // output: if found, retuznfl T

// index; otherwise, retu

int first, last, upper;
first = 0;
last = size - 1;
while (true) {
middle = (first + last) / 2;
if (data[middle] == wvalue)
return middle;
else if (value < data[middle])
last = middle - 1;
else
first = middle + 1;
}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

Example: Tower of Hanoi

> Tower of Hanoi is a mathematical game or puz |
> It consists of three rods/pegs and a number'
different sizes which can slide onto any rod.

>The puzzle starts with the disks in a neatf
ascending order of size on one rod, the small' '
top, thus making a conical shape. \

-

A B C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example: Tower of Hano

1.
> The objective of the puzzle is to move the é
to another rod, obeying the following rules:

1. Only one disk can be moved at a time.* \
2. No larger disk may be placed on top Qj a
dISk \“\:-ﬂ

Beginning Solution

-

Source Auxiliary Destination Source Auxiliary Destination

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

Example: Tower of Han,
»>The puzzle can be played with any number o%h isk

A ot

» The minimum number of moves required
a Tower of Hanoi puzzle is '

=2n -1

where N is the number of disks.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Towers of Hanoi |

[
| oe
a B c 5
|
L9)
\
,
\

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

26-09-2022

 move disk from Ato C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

« move disk from A to B

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Towers of Hanoi

e N = 2 A->C
« move disk from Bto C
Dr. Sunil Kumar, CSE Dept., MIET Meerut

Towers of Hanoi |

™

.n_2 B->C
A| ’|

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

10

Tower of Hanoi(N= 2)

|
| |
if

l'.!r' B

1. Disk 1 moved fromA—-> B
2. Disk 2 moved from A > C
3. Disk 1 moved from B = C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Towers of Hanoi | [|

\ ® s
| oe
| o 7
\ O R
Ll
A B C \
LY |
._\("
Ty h
%
|
\
|
]
[l
|

« move disk from Ato C
Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

11

26-09-2022

 move disk from Ato B
Dr. Sunil Kumar, CSE Dept., MIET Meerut

.n_3 A>B

 move disk from C to B
Dr. Sunil Kumar, CSE Dept., MIET Meerut

12

26-09-2022

« move disk from Ato C
Dr. Sunil Kumar, CSE Dept., MIET Meerut

.n_3 A->C

 move disk from B to A
Dr. Sunil Kumar, CSE Dept., MIET Meerut

13

26-09-2022

.n_3 B->A

« move disk from Bto C
Dr. Sunil Kumar, CSE Dept., MIET Meerut

Towers of Hanoi |

™

e N = 3 B->C
« move disk from Ato C
Dr. Sunil Kumar, CSE Dept., MIET Meerut

14

26-09-2022

Towers of Hanoi

.n_3 A->C
AI n|

Dr. Sunil Kumar, CSE Dept., MIET Meerut

1. Disk 1 moved fromA > C
Disk 2 moved fromA > B
Disk 1 moved from C - B
Disk 3 moved fromA > C
Disk 1 moved from B > A
Disk 2 moved fromB = C
Disk 1 moved fromA > C

N o o &~ 0N

Dr. Sunil Kumar, CSE Dept., MIET Meerut

15

« move (n — 1) disks from A to B using' C
Dr. Sunil Kumar, CSE Dept., MIET Meerut /

4|\

Towers of Hanoi {,', (1

e nN= 4 A(N-1) Disks>B

 move disk from Ato C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

16

.n_4 A->C

| B8
| | 4

» move (n — 1) disks from B to C using A’

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Towers of Hanoi

en=4 B(N-1) Disks>C
A | B |

Dr. Sunil Kumar, CSE Dept., MIET Meerut

26-09-2022

17

Tower of Hanoi(N= 4

1.A>B
2.A>C
3.B>C
4. A> B
5.C2>A
6.C> B
7.A> B
8.A>C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

9.B>C

10.B> A
11.C> A
12.B> C
13.A>B
14.A> C
15.B> C

26-09-2022

18

Towers of Hanoi

- BaseCasen=1
1. move disk from Ato C

» Recursive case
1. move (n—1) disks from Ato B
2. move 1 disk from Ato C
3. move (n—1) disks from B to C

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Algorithm

Let’s call the three pegs / rods \.—
BEG(Source), AUX(AUXiliary) & END(Destination). ;‘

1) Move the top N-1 disks from the Source to AUthan to :
2) Move the Nth disk from Source to Destination tO«Xé@“

3) Move the N-1 disks from AUXiliary tower to Destinatidh
Transferring the top N-1 disks from Source to Aﬂ '
tower can again be thought of as a fresh problem and.
solved in the same manner.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

28-09-2022

Algorithm

ALGORITHM:

TOH(N, BEG, AUX, END)

1. If N=1 then,

a. Write BEG> END

b. Return.

CALL TOH (N-1, BEG, END, AUX)
Write BEG - END

CALL TOH (N-1, AUX, BEG, END)

Return.

o~ D

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Tower of Hanoi Progra |

#include<stdio.h> int main()

void TOH(int n,char x,char y,char z) {

{ int n=3; \ %
if(n>0) TOH(n,'A",'B',C"); - |
{ } |

TOH(n-1,x,2,y);
printf("\n%c to %c",x,y);
TOH(n-1,y,x,2);

}

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

Tail Recursion

]]] [F |
What is tail recursion?

* A recursive function call is tail recursw
recursive call is the last thing execq
the function.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Contd...

/* non tail recursive example of the factorial function i
#include<stdio.h>

void main()

{

intn, c;

printf(“Enter the number: ”);
scanf(“%d",&n); Factorial of 5

c=fact(n);
printf("%d",c);
} = 5; mm =4 mn =3 mn = 2 mr = 1
fact(n) return 1;
{ return 5 * fact (mm-1);| return 4 * fact (mm-1)| zeturn 3 * fact(mm-1) | return 2 * fact (mm-1)
(3) B3l {1

if (n==0||n==1) | 1 2 1 . ‘ ? : |
return 1; i
return n * fact(n - 1); y .
} ’,‘_\\" A'. y

Vv J i

Contd...

/I A tail recursive function to

clal(;:ulatz fa:torial int factorial(int n, int f)
#include<stdio.h> I
{ ;
void main() i (n == 0]| n==1) e mﬁsre
{ { ‘
-) frl
|nt. n, ¢ return f; () pr[esewzge
printf(“Enter the number: ”); } - \n‘erme\e
SC?nf(“%dl’;’&?); clse . :haeu:eslﬁmva\ueof
c=factorial(n, 1); i :
printf(“Factorial: %d”, c); i:f*n; ol ﬂ”ﬂ”ﬁ”ste |
} . i . ‘ A
return factorial(n - 1, f); fattonal(Wﬂ) -
) lmlefte
} [l e
Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

Contd...

- Why do we care? ;
« The tail recursive functions considered bette

optimized by compiler.
* Tail-recursive functions is simple, s
recursive call is the last statement, there-is ng¢
left to do in the current function, so savi
current function’s stack frame is of no use.

Dr. Sunil Kumar, CSE Dept., MIET Meerut 4 4

Removal of Recurs

28-09-2022

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Removal of Recursion ' -

The function which call itself (In function)
again and again is known as recursive fUNGHioRs
This function will call itself as long asyHl
condition is satisfied

This recursion can be removed th
Iteration. \

Dr. Sunil Kumar, CSE Dept., MIET Meerut

A simple program of facto
through recursion:

28-09-2022

28-09-2022

/*Find the Factorial of any Number*/
#include<stdio.h> i
main()

{

int n, value;

printf(“‘Enter the number”);
scanf(“%d”,&n);

if(n<0)

printf(“No factorial of negative number”);
else

if(n==0)

printf(“Factorial of zero is 17);

Dr. Sunil Kumar, CSE Dept., MIET Meerut

else

{

value=factorial(n); /*function for factorial of nhumb
printf(“Factorial of %d= %d”,n,value);
}
}
factorial (int k)
{
int fact=1;
if(k>1)
fact=k*factorial(k-1); /*recursive function call*/
return (fact);

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

28-09-2022

/*Find the factorial of any number*/

#include<stdio.h>

main()

{

int n, value;

printf(“‘Enter the number”);
scanf(“%d”,&n);

if(n<0)

printf(“No factorial of negative number”);
else

if(h==0)

printf(“Factorial of zero is 17);

Dr. Sunil Kumar, CSE Dept., MIET Meerut

else

{ _
value=factorial(n); /*function for factorial of nu .
printf(“Factorial of %d= %d”,n,value); I

}

}

int factorial(int no)

{

int i,fact=1;

for(i=no;i>1;i--)

fact=fact*i;

return fact;

}
Dr. Sunil Kumar, CSE Dept., MIET Meerut V J

Trade-off between Recursion and

BASIS FOR COMPARISON RECURSION ITERATION

Basic The statement in a body ofAllows the set of instructions to be
function calls the function itself. repeatedly executed.

Format In recursive function, onlylteration includes initialization,
termination condition (base case)condition, execution of statement
is specified. within loop and update

(increments and decrements) the
control variable.

Termination A conditional statement isThe iteration statement is
included in the body of therepeatedly executed until a certain
function to force the function tocondition is reached.
return without recursion call being
executed.

Condition If the function does not convergelf the control condition in the
to some condition called (baseiteration statement never become§
case), it leads to infinite recursion. false, it leads to infinite iteration.

Infinite Repetition Infinite recursion can crash thelnfinite loop uses CPU cycles
system. repeatedly.

o _—

Trade-off between Recursion and It

BASIS FOR COMPARISON RECURSION ITERATION
Applied Recursion is always applied tolteration is applied to iteration
functions. statements or "loops".
Stack The stack is used to store the set Does not uses stack.

of new local variables and
parameters each time the function

is called.
Overhead Recursion possesses theNo overhead of repeated
overhead of repeated functionfunction call.
calls.
Speed Slow in execution. Fast in execution.
Size of Code Recursion reduces the size of the Iteration makes the code longer.
code.
/fx—" y
Dr. Sunil Kumar, CSE Dept., MIET Meerut 4 &
P W/ i

28-09-2022

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Table of Contents |

Definition of Queue

[)
o
9
[©]
—
]
=
o
=
@
o
=
(@)
c
(¢}
(e
o
>
e
&
)
o
Q
o
e}
o)
o
~
T
B -

Types of Queues:

— Linear Queue

— Circular Queue

— Dequeue [Double Ended Queue]
— Priority Queue

Array and linked implementation of queues in-C "

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

03-10-2022

WYL,

Queue

* Ordered collection of homogeneous eleme

* Non-primitive linear data structure.

* A new element is added at one end called Red
and the existing elements are deleted from the
end called Front End.

FFFFF

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Queue in Data Structure

1t 11 15 3 b 10

FRONT REAR

Dr. Sunil Kumar, CSE Dept., MIET Meerut

— isFull() : Check whether queue is full or no}“‘--ﬁ‘l

— Display(): Display the elements of the queu,e'; ! 7

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

Elements of Queue
¢ Front End:

This end is used for deleting an element from a queue
Initially front end is set to -1. Front end is incremente
one when a new element has to be deleted from queue.

* Rear End:
This end is used for inserting an element in a queue.
Initially rear end is set to -1. rear end is incremented
one when a new element has to be inserted in queue.

Deletion a[0] a[l] al2] a[3] a[4] Insertion

i L L L

T T
Front Rear
Dr. Sunil Kumar, CSE Dept., MIET Meerut 4

‘Queue Full(Overflow)’ Condition

¢ Queue Full(Overflow):

overflow occurs.

« Example: Queue Full:
— Before inserting an element in queue 1% check whether space is
new element in queue. This can be done by checking posfﬁ“&g\

Array begins with Oth index position & ends with Size-1 position.\Jf n

of elements in queue are equal to size of queue i.e. if rear end positi

to Size-1 then queue is said to be full. Size of queue = 4

A B C D

T T

Front Rear Vo

03-10-2022

‘Queue Empty(Underflow)’ Condition

¢ Queue Empty:
— Deleting an element from queue which is already empty is
Queue Empty condition (Front = Rear = -1)

queue underflow occurs.

¢ Queue Empty:

— Before deleting any element from queue check whether there
element in the queue. If no element is present inside a queu

& rear is set to -1 then queue is said to be empty.
— Size of queue =4
— Front=Rear =-1

Dr. Sunil Kumar, CSE Dept., MIET Meerut

r‘ |

™

. Circular Queue
. Dequeue (Double Ended Queue)
. Priority Queue

= W N -

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

Implementation of

1.Using an array
2.Using linked list

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Queue

03-10-2022

Front=-1 Queue is empty Front=1 Delete
1 5 B C
0 1 2 3 4 0 1 2 3 4
Rear=-1 Rear=2
Front=0 Insert A Front=2 Delete
2 A 6 C
0 1 2 3 4 0 1 2 3 4
Rear=0 Rear=2
Front=0 Insert B Front=3 Delete
3 A B 7
0 1 2 3 4 0 1 2 3 4
Rear=1 Rear=2 Queue is empty
Front=0 Insert C {
.. |
o ale e Entry point is called'R
Exit point is called/
0 1 2 3 4 ;
Rear=2

i) Initially front=rear= -1. It indicates queue is empty.

iii) Add 20
0 1

10{20

0O 1 2 3 4
front=rear= -1
ii) Add 10
0O 1 2 3 4
10
front rear
iv) Add 30
o 1 2 3 4

10 ‘ 20| 30

I

front

rear

I

I

front rear
v) Add 40
o 1
10 | 29
front

03-10-2022

vi) Add 50 vii) Add 60 (overflow) | [
01 2 3 4 0 1
10[20 | 30(40 ‘50 10 |20
front rear front

viii) delete (10 is removed) ix) delete (20 is removed

0o 1 2 3 4 o I 2 3
20 {30 {40 |50 30 | 40
front rear front

Dr. Sunil Kumar, CSE Dept., MIET Meerut

x) delete (30 is removed) xi) delete (40 is removi :

0 1 2 3 4 o 1 2 3
40 | 50
front rear
xii) delete (50 is removed) ix) delete (underflow,)
0 1 2 3 4 o 1 2 3
front=rear=-1 front=rear=-1

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

Implementation of queue usin

Algorithm insert()
1.

A o

If rear = size-1

then write (‘overflow’)
else

Read item

rear«<— rear + 1
queue[rear]«— item
if(front== -1)

front= front+1;

stop

Dr. Sunil Kumar, CSE Dept., MIET Meerut

y

Algorithm delete()

1.

Sl

If (front==-1)

then write (‘queue isempty’)
else

Item «— queue [front]

front < front + 1

Stop

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

Algorithm to display elements fro

Algorithm display()
1. if(front==-1)
1.1 write (‘queue is empty’)
2. else
2.1 repeat for i-> front torear
2.2. printqueue[i];
3. Stop

Dr. Sunil Kumar, CSE Dept., MIET Meerut _,j 4

Program: implementation of queue using array.
include <stdio.h>

define size 4

void insertion();

void deletion();

void display();

int front=-1, rear=-1, item, choice, queue[size];
void main()

clrser();
while(1)

{ \
printf("\n*** MENU ***\n 1. INSERTION\n 2. DELEHN \
3.TRAVERSE\n 4. EXIT\n"); }
printf("enter your choice:");
scanf("%d" &choice);
switch(choice)

case liinsertion();

break;

case 2:deletion();

break;

case 3:display(); break; case 4:exit(0);
default:printf("*** wrong choice ***\n");}}}

03-10-2022

void deletion()

void insertion()

ol

if(rear =size-1) printf("*** queue is emp

prim‘f("*** queue is fU“ ***\nu); else 19
else { ¢
{ item=queue[front];

printf("Enter item info queue:"), front++;
scanf("%d" &item); printf("The deleted item

rear++; %d\n" item);
queue[rear]=item; }
if(front==-1) }
{;m“"; void display()
int i;
if(front==-1)
printf("*** queue is empty ***\n");
else

printf("\n elements in queue:- ");
for(i=front;i<=rear;i++)
printf("%d" queuelil);

B

Drawback in queue

* In a queue when the rear pointer reaches to
the queue, insertion would be denied eve
is available at the front.

* One way to remove this restriction is by
circular queue.

03-10-2022

Linked List Implementati:
Queue

Linked Represelntation of Queues

300—> 35— 360—> N Front=290

Rear = 360
290 Front 300 350 360 rear
Linked queue
3 300—*- 50—l 360—'- 3so— 5l N
290 front 350 380 rear

Lmked queue after inserting a node

ER 50— N 360—EN 3s0— [N

300 front 350 360 380 rear

Linked queue after deleting a node

Dr. Sunil Kumar, CSE Dept., MIET Meerut

03-10-2022

1)

front=NULL
rear=NULL

2) Insert =12

12

I

front rear

3) Insert=45

—— NULL

12
front rear
4) Insert=26
12 E—— 45 4>{ 26 ‘ Jl——b NULL
front rear
il
1) Delete=12
12 R — 45 . 26 —— NULL
front rear
Delete=45
2)
45 —_— 26 —— NULL
front rear

3) Delete=26

4)
front=NULL
rear=NULL

26 —— NULL

11

front rear

03-10-2022

03-10-2022

Algorithm to insert elements in t@}

||

-,s
%‘

Algorithm_Enqueue

1. newNode -> data = data
newNode -> next = NULL
if (REAR == NULL)
FRONT = REAR = newNode
else
REAR -> next = newNode
REAR = newNode
end

© N O~ wDD

Algorithm to delete elements fro

Algorithm_Dequeue
1. if(FRONT == NULL)
print “QUEUE IS EMPTY" and exit.
else
temp = FRONT
FRONT = FRONT -> NEXT
free(temp)
end

S A

#include<stdio.h>

#include<conio.h>

struct Node

{

int data;

struct Node *next;

%

struct Node *front = NULL *rear =
NULL;

void EnQueue(int);
void DeQueue();
void display();

int main()
{
int choice, value;

printf("\n*** Queue Im|
using Linked List ***

while(1)
{

printf("1. Insert in Q@,:e
printf("2. Delete Fr'o
printf("3. Dnsplay
printf(*4. Exn‘\n“)
printf("Enter your chmce% ‘)
scanf("%d" &choice): ‘-3'

switch(choice)

{

case 1: printf("Insert the value you
want to enter: ");

scanf("%d", &value);
EnQueue(value); break;

case 2: DeQueue(); break;

case 3: display(); break;

case 4: exit(0);

default: printf("\nInvalid
Choicell\n");

3

}

return O;

}

void EnQueue(int val
{ 1
struct Node *newNode
newNode = (struct |
Node*)malloc(sizeof(
Node)); \
newNode -> data = value p 1%
newNode -> next = NU{:‘ \ &
if (front == NULL)
front = rear = newNox
else “\% |* 5
{ t_}fi
rear -> next = newNode; |
rear = hewNode;
}
}

03-10-2022

void DeQueue()

{
if (front == NULL)

printf("\n Queue is Emptylll\n");

else
{
struct Node *temp = front;
front = front -> next;
printf("\n Deleted element is:
%d\n", temp->data);
free(temp);
}
}

void display() {
if (front == NULL)
printf("\n Queue is E

else |

{

printf("%d --> ", temp->datd}®
= femp -> next;

}

printf("%d \n" temp

}

}

03-10-2022

Overcome disadvantage of Lineaf |

» Circular Queue is a linear data structure ini
operations are performed based on FIFO (Firs IS
Out) principle and the last position is connected |
to the first position to make a circle. L4/

« ltis also called ‘Ring Buffer’. _.

« In a normal Queue, we can insert elements untilUsh
of queue becomes full. But once queue beCQme

we can not insert the next element even if there |§®
space in front of queue. \

3
9] il 2 3 4
[Tl [[]
: 1 I [

rear front rear
front

Ordinary queue

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Operations on Circular Qu

* enQueue(value):

— This function is used to insert an element_‘
circular queue. \

—In a circular queue, the new element: |s
inserted at Rear position.

deQueue():

— This function is used to delete an element fro
circular queue.

— In a circular queue, the element is always deI
from Front position. 1 7

06-10-2022

1. Initially, Rear = 0, Front = 0.

2
1

4

2.Insert 10, Rear =1, Front = 1.
Rear ?
Front 4

4

3. Insert 50, Rear = 2, Front = 1.

Front 2 Rear
5
' 3

3

4. Insert 20, Rear = 3, Fr

5. Insert 70, Rear = 4, Front |

Front 2

2

3

(L)

Rear

6. Delete front, Rear—4 Front & 2

% Front

7. Insert 100, Rear = 5, Front = 2.

2
Front
5 b
:
Rear
3

8. Insert 40, Rear = 1, Front = 2.

2
Rear Front
s
A%

Y

9. Insert 140, Rear = 1, Front = 2.
As Front = Rear + 1, so Queue overflow.

2
Rear Front
5
a 3

3

12. Delete front, Rear=

Front "4

06-10-2022

Question: Consider the following queue of charac
QUEUE is a circular array which is allocated s’-i>,_<

FRONT=2, REAR=4 QUEUE: _ACD_ _1§
Describe the queue as following operations take pla
a) F is added to queue
b) Two letters are deleted
c) K, L and M are added
d) Two letters are deleted
e) R is added to queue
f) Two letters are deleted
g) S is added to queue
h) Two letters are deleted

One letter is deleted
One letter is deleted

(
(
(
(
(
(
(
(
(i
(i

)
)

Solution: Vi
FRONT=2, REAR=4 QUEUE: _ACD [
a) FRONT=2, REAR=5 QUEUE: _ACDF_ |
b) FRONT=4, REAR=5 QUEUE: __ _DF _ |
c) REAR=2, FRONT=4 QUEUE:LM_DFK |
d) FRONT=6, REAR=2 QUEUE:LM __ K
e) FRONT=6, REAR=3 QUEUE: LMR__K
f) FRONT=2, REAR=3 QUEUE: MR __ "
) REAR=4, FRONT=2 QUEUE: MRS _
) FRONT=4, REAR=4 QUEUE: S
FRONT=REAR=0 [As FRONT= REAR, queue is empty

Since FRONT=NULL, no deletion can take place. Unde
occurred

0 Q

P B S e S s N i e M S S
= =

j

06-10-2022

CIRCULAR QUEUE IMPLEMENTATION

After Rear reaches the last position, i.e. MAX-1 in
order to reuse the vacant positions, we can bring rear
back to the O™ position, if it is empty, and continue
incrementing Rear in same manner as earlier. Thus
Rear will have to be incremented circularly.

For deletion, Front will also have to be incremented
circularly.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Engueue(lnsert) operation on Circular Queue

Step 1: IF (REAR+1)%MAX = FRONT
Write " OVERFLOW "

Goto step 4

[End OF IF]

Step 2: [F FRONT = -1and REAR = -1
SET FRONT = REAR =0

ELSE IF

REAR = MAX -1and FRONT ! =0
SET REAR = o

ELSE

SET REAR = (REAR + 1) % MAX
[END OF IF]

Step 3: SET QUEUE[REAR] = VAL
Step 4: EXIT

Dr. Sunil Kumar, CSE Dept., MIET Meerut

14-10-2022

Dequeue (Delete) operation on Circular Queue

e Step1: IF FRONT = -1
Write " UNDERFLOW "
Goto Step 4
[END of IF]

e Step 2: SET VAL = QUEUE[FRONT]

« Step 3: IF FRONT = REAR
SET FRONT = REAR = -1
ELSE
IF FRONT = MAX -1
SET FRONT = o
ELSE
SET FRONT = FRONT + 1
[END of IF]

[END OF IF]

¢ Step 4: EXIT

Dr. Sunil Kumar, CSE Dept., MIET Meerut

PRIORITY QUEUE

* A priority Queue is a collection of elements where
each element is assigned a priority and the order
in which elements are deleted and processed is
determined from the following rules:

1) An element of higher priority is processed before any
element of lower priority.

2) Two elements with the same priority are processed
according to the order in which they are added to the
queue.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

14-10-2022

The priority queue implementation

* The priority queue is again implemented in two
way:
1. Array/Sequential Representation
2. Dynamic/Linked Representation

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Array Representation of Priority Queue

¢ One way to maintain a priority queue in memory is to use a separate queue for
each level of priority. Each such queue will appear in its own circular array and
must have its own pair of pointers, FRONT and REAR.

e If each queue is allocated the same amount of space, a two dimensional array
QUEUE can be used instead of the linear arrays for representing a priority
queue.

o If K represents the row K of the queue, FRONT[K] and REAR[K] are the front
and rear indexes of the Kth row.

e 2 3 4 5 6 -
A

B C X

[

Priority

Ui A WN
1
w)
(esl

14-10-2022

Linked list representation of a priority queue

Another way to maintain a priority queue in memory is
by means of a one-way list. Each node in list will
contain three items of information: an information
field INFO, a priority number PRN and a link field LINK.

INFO PRMN LINE

A node X proccuco aio& i o
e If X has higher priority thanY

e Or when both have same priority but X was added to list before
Y

Example

Input

4 0| .10 4 34 2 47 1 39 5

Data I Priority

Address

- output

4 0 }—~ 47 1 34 2 10 4 39 5

14-10-2022

Double Ended Queue

® Double Ended Queue is also a Queue data structure in which the
insertion and deletion operations are performed at both the ends
(front and rear).

¢ That means, we can insert at both front and rear positions and can
delete from both front and rear positions.

front rear

insert‘ l l)Ensert

delete t 7 delete

Double Ended Queue

* Double Ended Queue can be represented in TWO
ways, those are as follows:
e Input Restricted Double Ended Queue
e OQutput Restricted Double Ended Queue

17-10-2022

Input Restricted Double Ended Queue

In input restricted double-ended queue, the
insertion operation is performed at only one
end and deletion operation is performed at
both the ends.

front rear

delete c 7 delete

Output Restricted Double Ended Queue

In output restricted double ended queue, the
deletion operation is performed at only one
end and insertion operation is performed at

both the ends.

17-10-2022

Question: Consider the following deque of characters where DEQUE is a
circular array which is allocated six memory cells.

LEFT=2, RIGHT=4 DEQUE: _A,C,D, _, _
Describe deque while the following operation take place:
(a) F is added to right of deque
(b) Two letters on right are deleted
(c) K,L and M are added to the left of the deque
(d) One letter on left is deleted.
(e) R is added to the left of deque

(f) S is added to right of deque

(g) T is added to the right of deque

Answer:
(a) F isadded to right of deque

LFET=2, RIGHT=5 _ACDF _
(b) Two letters on right are deleted

LEFT=2 RIGHT=3 EATEE
(c) K,L and M are added to the left of the deque

LEFT=5 RIGHT=3 KAC_ML
(d) One letter on left is deleted.

LEFT=6 RIGHT=3 KAGCE L
(e) R is added to the left of deque.

LEFT=5 RIGHT=3 KAC_RL

(f) S is added to right of deque

LEFT=5 RIGHT=4 KACSRL
(g) T is added to the right of deque

Since LEFT= RIGHT+1, the array is full and hence T cannot be
added to the deque

17-10-2022

Insert Elements at Front

First we check if the queue is full. If its not full we insert an element at
front end by following the given conditions :

If the queue is empty then initialize front and rear to 0. Both will point to

the first element.

WHEN ONE ELEMENT IS ADDED
LETS S5AY 10.

10|

o
FRONT= REAR = O

El E a B

Else we decrement front and insert the element. Since we are using circular
array, we have to keep in mind that if front is equal to O then instead of
decreasing it by 1 we make it equal to SIZE-1.

ITNSERT 12 AT FRONT,

[o] [|

o
REAR = O

| =]

FRONT=5

2 s

NOW INSERT 14 AT FRONT

[zo |

| | [e=]e=]

o
REAR = O

= = - s
FROMNT= 4

Insert Elements at Front

void Dequeue :: push_front(int key)
{

if(full())

{
printf("OVERFLOW\n");
}

else

{

//1f queue is empty
if(front == -1)

front = rear = o;

//If front points to the first position
element

else

if(front == o)
front = SIZE-1;
else

--front;
arr[front] = key;
1

1

17-10-2022

Insert Elements at Rear

Again we check if the queue is full. If its not full we insert an element at

back by following the given conditions:

If the queue is empty then initialize front and rear to 0. Both will point to

the first element.

Else we increment rear and insert the element. Since we are using circular
array, we have to keep in mind that if rear is equal to SIZE-1 then instead of

increasing it by 1 we make it equal to 0.

INSERT 21 AT REAR

10 21 14 12
° REA; =1 ’ FR:;&NT:*J— }

Insert Elements at Rear

void Dequeue :: push_back(int key) //If rear points to the last element

{
if(full())

{

printf("OVERFLOW\n”);

}

else

|

//1f queue is empty
if(front == -1)

front = rear = o;

else

if(rear == SIZE-1)
rear = o;

else

++Tear;

arr[rear] = key;

}

}

17-10-2022

Delete Elements At Front

In order to do this, we first check if the queue is empty. If its not then
delete the front element by following the given conditions :

If only one element is present we once again make front and rear equal to -1.

Else we increment front. But we have to keep in mind that if front is equal to
SIZE-1 then instead of increasing it by 1 we make it equal to O.

DELETE FROM FRONT /-)

[
10 21 14 |12
° REAlR =1 - : FR:JNT:-Q— }

FROMNT CHANGES TO B

10 |21 12
REAR =1 FROMNT=5

Delete Elements At Front

void Dequeue :: pop_front() {
| //1f only one element is present
if(empty()) if(front == rear)
{ front = rear = -1;
printf("UNDERFLOW\n“); //If front points to the last element
} else
else if(front == SIZE-1)

front = o;

else

++front;

}

}

17-10-2022

Delete Elements At Rear

In order to do this, we again first check if the queue is empty. If its not
then we delete the last element by following the given conditions :

If only one element is present we make front and rear equal to -1.

Else we decrement rear. But we have to keep in mind that if rear is equal to 0
then instead of decreasing it by 1 we make it equal to SIZE-1.

DELETE FROM BACK

~

Ll

10 |21 12

[s] 1 2 3 4 =1
REAR =1 FRONT= 5
REAR CHANGES TO O

10 1z

(=] 1 2 3 4 =1

REAR-C FRONT= 5

Delete Elements At Rear

void Dequeue :: pop_back()
{

if(empty())

{

printf("UNDERFLOW\n)";
}

else

{

//1f only one element is present
if(front == rear)
front = rear = -1;

//If rear points to the first position
element

else

If(rear == o)
rear = SIZE-1;
else

--rear;
1
1

17-10-2022

